

P R O C E E D I N G S
The 8th Workshop on

IInntteelllliiggeenntt TTeecchhnniiqquueess ffoorr WWeebb
PPeerrssoonnaalliizzaattiioonn aanndd RReeccoommmmeennddeerr SSyysstteemmss

I TWP 2010

Editors:

Bamshad Mobasher, Dietmar Jannach, Sarabjot Singh Anand

BIG ISLAND OF HAWAII, JUNE 20 2010

In Conjunction with the 2010 International Conference on
User Modeling, Adaptation and Personalization (UMAP 2010)

Copyright and Bibliographical Information
© The copyright of for papers appearing in these proceedings belongs to the
paper’s authors. Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage.

Proceedings of the 8th Workshop on Intelligent Techniques for Web
Personalization and Recommender Systems (ITWP 2010), in
conjunction with the International Conference on User Modeling,
Adaptation, and Personalization (UMAP 2010). June 20-24, 2010.
Bamshad Mobasher, Dietmar Jannach, and Sarabjot Singh Anand
(editors).

Workshop Web Site
Additional information about the workshop, including the electronic versions
of accepted papers and links to related workshops will be maintained at the
workshop Web site:

http://ls13-www.cs.uni-dortmund.de/homepage/ITWP2010/

Workshop Co-Chairs

Bamshad Mobasher, DePaul University, USA
Dietmar Jannach, TU Dortmund, Germany
Sarabjot Singh Anand, University of Warwick, UK

Program Committee

Esma Aïmeur, Université de Montréal, Canada
Gediminas Adomavicius, CSOM, University of Minnesota
Liliana Ardissono, University of Torino, Italy
Bettina Berendt, K.U.Leuven, Belgium
Shlomo Berkovsky, CSIRO, Australia
José Luís Borges, University of Porto, Portugal
Derek Bridge, University College York, Ireland
Alexander Felfernig, Technical University Graz, Austria
Gerhard Friedrich, University Klagenfurt, Austria
Rayid Ghani, Accenture, USA
Andreas Hotho, University of Karlsruhe, Germany
Alipio Jorge, University of Porto, Portugal
Zan Huang, Pennsylvania State University, USA
Mark Levene, University College, London, UK
Frank Linton, The MITRE Corporation, USA
Stuart E. Middleton, University of Southampton, UK
Dunja Mladanic, Jožef Stefan Institute, Slovenia
Alexandros Nanopulos, Aristotle University of Thessaloniki, Greece
Olfa Nasraoui, University of Louisville, USA
Claire Nedellec, Université Paris Sud, Paris, France
George Paliouras, Demokritos National Centre, Greece
Naren Ramakrishnan, Virginia Tech, USA
Francesco Ricci, Free University of Bozen/Bolzano, Italy
Lars Schmidt-Thieme, University of Hildesheim, Germany
Spiros Sirmakessis, University of Patras, Greece
Barry Smyth, University College Dublin, Ireland
Markus G. Stolze, IBM Watson Research Center, NY
Alex Tuzhilin, Stern School of Business, New York University, USA
Suk-Chung Yoon, Widener University, Pennsylvania, USA
Markus Zanker, University Klagenfurt, Austria
Daniel Zeng, University of Arizona

3

Foreword

Web Personalization and recommendation systems have been steadily gaining ground
as essential components of today’s Web based applications, including in e-commerce
and the delivery of business services, and in providing support for Web search and
navigation in information rich domains. The proliferation of Web 2.0 applications has
allowed users to go beyond simple consumers of information and instead actively
participate in shaping collaborative environments in which users, resources, and user-
provided content are all networked together. There is, therefore, an increased need for
more intelligent and personalized tools that help users navigate these complex
information spaces. These tools include a new generation of recommender systems
that integrate multiple online channels, are more scalable and more adaptive, and can
better handle user interactivity. To achieve this, such applications must rely on
intelligent techniques from AI, machine learning, Web mining, statistics, and user
modeling in order to leverage and mine all available data, including user profiles, the
content and meta-data associated with resources, and underlying network structures.

The aim of this workshop is to bring together researchers and practitioners From Web
Mining, Web Personalization, Recommender Systems, and User Modeling
communities in order to foster an exchange of information and ideas and to facilitate a
discussion of current and emerging topics related to the development of intelligent
Web personalization and Recommender Systems. This workshop represents the 8th in
a successful series of ITWP workshops that have been held at IJCAI and AAAI since
2001 and would be – after the successful events at AAAI'07, AAAI'08, and IJCAI’09
- the 3rd combined workshop on ITWP and Recommender Systems.

This year’s workshop attracted a number of high-quality contributions of which six
papers were accepted for presentation at the workshop. These accepted papers span a
variety of issues and techniques related to personalization and recommender systems.
Specifically, the papers deal with such topics as the integration of domain ontologies
in collaborative recommendation; the use of data mining techniques such as
association rule discovery in recommendation; the generation of user
recommendations based by integrating and aggregating online data sources; the use of
rating frequencies as the basis for generating prediction; the use of Bayesian networks
to model preferences from customer feedback; and non-traditional personalization
models such as reciprocal recommendation. This year’s workshop also includes two
invited addresses: “The user side of personalization: how personalization affects the
users" by Professor Peter Brusilovsky from the University of Pittsburgh; and
“Content-based Recommender Systems: problems, challenges and current research
directions” by Professor Giovanni Semeraro from the University of Bari, Italy.

ITWP 2010 Organizing Committee
Bamshad Mobasher, Dietmar Jannach, and Sarabjot Singh Anand
June 2010

4

Table of Contents

Workshop Co-Chairs and Program Committee . 3

Foreword . 4

Invited Talk: The User Side of Personalization: How
Personalization Affects the Users
Peter Brusilovsky . 6

Invited Talk: Content-based Recommender Systems: Problems,
Challenges and Current Research Directions
Giovanni Semeraro . 7

Neighborhood-Restricted Mining and Weighted Application of
Association Rules for Recommenders
Fatih Gedikli and Dietmar Jannach . 8

Ontology-Based Collaborative Recommendation
Ahu Sieg, Bamshad Mobasher, Robin Burke . 20

Using Bayesian Networks to Infer Product Rankings from
User Needs
 Sven Radde and Burkhard Freitag . 32

Contact Recommendations from Aggregated On-Line Activity
Abigail Gertner, Justin Richer, Thomas Bartee . 44

Reciprocal Recommenders
Luiz Pizzato, Tomek Rej, Thomas Chung, Kalina Yacef, Irena Koprinska,
Judy Kay 53

Recommending Based on Rating Frequencies: Accurate Enough?
Fatih Gedikli and Dietmar Jannach . 65

5

Invited Talk

The user side of personalization:
How personalization affects the users

Peter Brusilovsky
University of Pittsburgh

Abstract:

The personalization algorithms are polished on log data and ready to face real users.
But what you can expect when real users hit the newly minted personalized Web site?

The talk will focus on user behavior in personalized Web systems and examines how
user behavior is affected by personalized guidance and recommendation. It will
review the results of several long-term studies of personalized systems and discuss
both local impact (whether the users follow recommendations) and global impact of
personalization.

Biography:

Peter Brusilovsky has been working in the field of adaptive
educational systems, user modeling, and intelligent user
interfaces for more than 20 years. He published numerous
papers and edited several books on adaptive hypermedia and
the adaptive Web. Peter is currently an Associate Professor
of Information Science and Intelligent Systems at the
University of Pittsburgh, where he directs Personalized
Adaptive Web Systems (PAWS) lab. Peter is the Associate
Editor-in-Chief of IEEE Transactions on Learning
Technologies and a board member of several journals
including User Modeling and User Adapted Interaction,

ACM Transactions on the Web, and Web Intelligence and Agent Systems. He is also
the current President of User Modeling Inc., a professional organization of user
modeling researchers.

6

Invited Talk

Content-based Recommender Systems: problems,
challenges and current research directions

Giovanni Semeraro
University of Bari

Abstract:

Content-based recommender systems (CBRS) analyze a set of objects, usually textual
descriptions of items previously rated by a user, and build a model of user interests,
called user profile, based on the features of the objects rated by that user. The user
profile is then exploited to recommend new potentially relevant items. In spite of the
growing importance of collaborative filtering algorithms over the last years, Web 2.0
and the huge amount of user generated content, such as tags, annotations,
folksonomies, etc., are providing new opportunities and challenges for CBRS. The
talk discusses the main problems which cause some limitations of CBRS, such as
overspecialization and limited availability of content, and describes current research
directions for overcoming them, including: defeating homophily in recommender
systems: introducing serendipity for recommendation diversification; knowledge
infusion into CBRS: exploiting open knowledge sources (Wikipedia, folksonomies)
for improving recommendation algorithms; and cross-language recommender
systems: algorithms for learning multilingual content-based profiles.

Biography:

Giovanni Semeraro is Associate Professor at the University of Bari “Aldo Moro” in
Italy since November 1, 1998, where he leads the research group SWAP (Semantic
Web Access & Personalization, http://www.di.uniba.it/~swap/) at the Department of
Computer Science. His main research interests fall into the following areas: Intelligent
Information Access, Recommender Systems, Information Mining, Machine Learning,
Personalization and User Modelling, Natural Language Processing. He has been
responsible for 10 international and national projects and 16 research contracts. He is
editor of 8 international books and author of more than 300 scientific papers published
in international journals, books, conference and workshop proceedings.

7

Neighborhood-restricted mining and weighted
application of association rules for recommenders

Fatih Gedikli and Dietmar Jannach

Technische Universität Dortmund,
44227 Dortmund, Germany

{firstname.lastname}@tu-dortmund.de

Abstract. Association rule mining algorithms such as Apriori were orig-
inally developed to automatically detect patterns in sales transactions
and were later on also successfully applied to build collaborative filtering
recommender systems (RS). Such rule mining-based RS not only share
the advantages of other model-based systems such as scalability or ro-
bustness against different attack models, but also have the advantages
that their recommendations are based on a set of comprehensible rules.
In recent years, several improvements to the original Apriori rule min-
ing scheme have been proposed that for example address the problem of
finding rules for rare items. In this paper, we first evaluate the accuracy
of predictions when using the recent IMSApriori algorithm that relies
on multiple minimum-support values instead of one global threshold. In
addition, we propose a new recommendation method that determines
personalized rule sets for each user based on his neighborhood using IM-
SApriori and at recommendation time combines these personalized rule
sets with the neighbors’ rule sets to generate item proposals. The evalua-
tion of the new method on common collaborative filtering data sets shows
that our method outperforms both a standard IMSApriori recommender
and a nearest-neighbor baseline method. The observed improvements in
predictive accuracy are particularly strong for sparse data sets.

1 Introduction

Association rule mining is a popular knowledge discovery technique which was
designed as a method to automatically identify buying patterns in sales trans-
actions, or, in a more broader view, to detect relations between variables in
databases. One of the earliest efficient techniques to find such rules is the Apri-
ori algorithm proposed by Agrawal and Srikant in [AS94]. A common example
of an association rule that could be found in the sales transactions in a super-
market could be [LHM99]:

cheese ⇒ beer [support = 10%, confidence = 80%]
which can be interpreted that in 10% of all transactions beer and cheese were
bought together (support of the rule) and that in 80% of the transactions, in
which cheese was bought, also beer was in the shopping basket (confidence). Con-
fidence and support are thus statistical measures that indicate the “strength” of
the pattern or rule.

8

Quite obviously, the knowledge encoded in such automatically detected asso-
ciation rules (frequent itemsets) can be exploited to build recommender systems
(RS)1. A simple recommendation algorithm capable of producing a “top-N” list
of items could include the following steps: (1) Use Apriori to detect all associa-
tion rules that surpass a minimum support threshold. These rules can be mined
from real purchase data or from “like” statements in a rating database. (2) Take
those rules that are “supported” by the target user (i.e., where the user has pur-
chased all items on the rule’s left-hand-side) and compute the set of items that
are predicted by those rules and which the user has not yet purchased. (3) Sort
the recommendation list by the confidence values of the involved rules. Early
successful experiments using such a method for recommendation purposes with
a slight variation of the prediction scheme are for example reported in [SKKR00].

Since the rules can be mined in an offline model-learning phase, rule mining-
based approaches do not suffer from scalability problems like memory-based
algorithms [SMB07]. A further advantage of these approaches lies in the fact that
the underlying model, i.e., the set of rules, is explicit and comprehensible to users.
Thus, not only interesting consumer behavior phenomena can be learned from
it, the rules can also be used to explain the recommendations to end users as to
increase the users’ confidence in the system’s proposals. Finally, from a business
perspective, the explicit rule bases can also be easily extended manually with
additional domain knowledge, which is not easily possible with other learning-
based recommendation methods.

While the accuracy of rule mining-based recommenders is comparable to
nearest-neighbor (kNN) collaborative filtering approaches, using the original
Apriori algorithm can lead to the problem of reduced coverage as shown in
[SMB07]. This phenomenon can be caused by the usage of a global minimum
support threshold in the mining process, which leads to the effect that no rules
for rare items can be found. Lin et al. [LAR02] therefore propose an “adaptive-
support” method, in which the minimum support value is determined individ-
ually for each user or item (depending on whether item associations or user
associations are used). Their experiments show a slight increase in accuracy
when compared with the baseline kNN-method.

More recently, Kiran and Reddy [KR09] proposed a new method called IM-
SApriori that uses a particular metric to determine appropriate minimum sup-
port values per item (see also [LHM99]) in order to mine rare itemsets; their
experiments indicate that this method is better suited to mine rare itemsets
than previous methods. An evaluation of the approach for recommendation pur-
poses has however not been done so far.

In this work, we evaluate the predictive accuracy of a recommender system
based on the IMSApriori algorithm and describe our extension to the Frequent
Itemset Graph used in [NM03b] for enabling a fast recommendation process. In
addition, we propose a new scheme for association rule-based recommendation
called NRR (Neighborhood-restricted Rule-based Recommender), which is based
on the idea to learn a personalized set of rules for each user based on his nearest

1 See [AT05] for an overview.

9

neighbors and not on the whole database of transactions, see also [Zan08]. Similar
to kNN-approaches, the underlying idea of this is that close neighbors will be
better predictors than others. The user’s personalized knowledge base is then
combined with the rule sets of his nearest neighbors to generate recommendation
lists.

The paper is organized as follows. After an example and the introduction of
the basics of the used rule mining methods, we describe our NRR method to
learn personalized rule learning and prediction generation in detail. Afterwards,
the results of an evaluation on typical CF data sets with different density levels
and parameter settings are discussed. The paper ends with a conclusion and a
short discussion of further works.

2 Example

Let us illustrate the different ideas in this paper with a simplified example.
Consider the rating database in Figure 1 in which a “1” indicates that a user
liked or purchased an item, a “0” corresponds to a dislike statement. Empty cells
mean that no information is available. Let us assume that our goal is to make a
recommendation for User1.

Item 1 Item 2 Item 3 Item 4 … Item 6 Item 7 Item 8

User 1 1 0 1 0 … ? ? ?

User 2 1 0 1 0 … 1

User 3 1 0 1 0 … 1

User 4 1 0 1 1 … 1 1

User 5 1 0 1 1 … 1

User 6 1 1 1 1 … 1

… … … … … … … … …

r1

r2

Rare item

Fig. 1. Example setting for personalized rule bases.

Among others, a rule mining algorithm could detect rules such as
r1: Item1, Item3 ⇒ Item6 [support = 33%, confidence = 33%] and
r2: Item1 ⇒ Item8 [support = 50%, confidence = 50%]

where the second rule is “stronger” as it is supported by more evidence. Note that
Item7 is a “rare” item, i.e., only few ratings (in that simplified case only one) are
available. When using the standard Apriori algorithm, a global minimum support
threshold value is used in order to avoid the effect of “rule explosion”. This
however leads to the effect, that no rules can be learned for rare items because
they never reach the global threshold value. Thus, as mentioned above, variations
to the Apriori scheme like IMSApriori have been developed that employ multiple
minimal support values to take the relative frequency of the items into account.

10

When making a prediction based on the standard scheme described in the
introduction, both rule r1 and r2 apply as User1 has rated both Item1 and Item3
positively. Since the confidence value of r2 is the higher one, the recommender
would recommend Item8 (place Item8 before Item6 in the recommendation list).
The idea in our approach however is that closer neighbors are better predictors
than other users. In the example, it could therefore be a good idea to recommend
Item6 because rule r1 is supported by the ratings of User2 and User3 who are
very similar to the target user User1 in their rating behavior (in that case even
identical).

The NRR method proposed in this paper works as follows. First, we learn a
personalized set of rules for each user by taking only the n closest neighbors into
account. In an extreme setting, we could only use the ratings of User2 and User3
for learning the rules for User1. In that case, rule r1 would be learned. The rule
base for User4, on the other hand, would probably also include r2. When again
applying the standard prediction scheme, Item6 would now be recommended for
User1 as intended. However, the coverage of that approach could be very limited.
Thus, we propose a neighborhood-based prediction scheme, in which also the
rules of the neighbors are taken into account. When recommending items for
User1 we would therefore use the rules of User2 and User3, but probably also
those of User4 (which include the rule r2). In that case, coverage is increased
again. At the same time - if we give limited weights to rules of farther-away
neighbors - r1 can remain the dominating rule and cause Item6 to be at the top
of the recommendation list without losing the other rules.

3 Algorithms

In the following we will shortly summarize the rough ideas of the used rule mining
approaches Apriori and IMSApriori in order to give the reader a quick overview
of the algorithm parameters that were varied in the experimental evaluation.
In addition, we will describe how the Frequent Itemset Graph proposed, e.g., in
[NM03b], has to be extended for a recommender based on IMSApriori.

Apriori. The original Apriori algorithm [AS94] works by iteratively generating a
set of candidate itemsets in multiple phases. In our example above, it will start by
constructing one-element itemsets, such as {Item1} and {Item2}, and then check
if these itemsets have minimum support, where the support of an itemsetX ⇒ Y
is defined as the ratio of the number of transactions containing X ∪ Y to the
number of all transactions. Itemsets that have not enough support are pruned. In
the next phase, the remaining itemsets are combined with one more (frequent)
element and checked against the database. This process is repeated until no
more candidates can be generated. Overall, one of the ideas of the algorithm’s
implementation is that “any subset of a large itemset must be large”2 [AS94].

2 Frequent itemsets were originally called large itemsets.

11

Once all frequent itemsets are detected, association rule mining approaches
use further quality metrics to measure the significance of the detected rules. The

confidence of a rule X ⇒ Y is defined as support(X∪Y)
support(X) , which is a common metric

to prune uninteresting rules. The threshold values for minimum confidence and
support are often empirically determined and have to be specified by the user.

IMSApriori. In order to deal with the problem of “missing rules” for rare, but
interesting itemsets, different proposals have been made. IMSApriori [KR09],
which is used in this work, is a very recent one that builds on the idea of having
several minimum support thresholds, an idea also proposed earlier as MSapriori
in [LHM99]. The general idea is to calculate a minimum item support (MIS) value
for each item with the goal to use a lower support threshold for rare itemsets. In
[LHM99] a user-specified value β (between 0 and 1) is used to calculate a MIS
value based on the item’s support and a lower support threshold value LS as
MIS(item) = max(β×support(item), LS). In order to be counted as a frequent
itemset, itemsets containing only frequent items have to pass a higher minimum
support threshold than itemsets consisting of frequent and rare or only rare
items. Thus, rare itemsets are found when using a low value for LS while at the
same time not too many uninteresting, but more frequent rules are accepted.

Recently, in [KR09], a different approach to calculate the MIS values was
proposed because MSapriori fails to detect rare itemsets in situations with
largely varying item support values. This phenomenon can be attributed to
the fact that due to the constant proportional factor β the difference between
the item support and the MIS value decreases when we move from frequent to
rare items. The main idea of the improved MSapriori (IMSApriori) is therefore
the use of the concept of “support difference” (SD) to calculate MIS values as
MIS(item) = max(support(item)−SD,LS). SD is calculated as SD = λ(1−α),
where λ is a parameter “like mean, median, mode, maximum support of the item
supports” and α is a parameter between 0 and 1. The net effect of the support
difference concept is that the difference between item support values and the MIS
values remains constant so that rare items can also be found in data sets with
strongly varying item supports. Finally, an itemset is considered to be frequent
if its support is higher than the minimum of the MIS values of its components.
Regarding the generation of candidates, it has to be noted that the Apriori as-
sumption that all subsets of frequent itemsets are also frequent does not hold
and that a different algorithm for finding frequent itemsets has to be used.

Neighborhood-restricted Rule-based Recommender (NRR). As shown
in the example, the idea of the herein proposed NRR algorithm is to learn
personalized rule sets for each user in an offline phase and to exploit these rule
sets in combination with the neighbor’s rule sets to generate more accurate
predictions. The algorithm is summarized in Algorithm 1. The parameters of
the algorithm include – beside the IMSApriori parameters – two neighborhood
sizes (for rule learning and for the prediction phase). In the online phase, the
calculated user-specific frequent itemsets (UserFISs) of the target user and of the

12

neighbors of the target user are used to calculate predictions using the Extended
Frequent Itemset Graph (EFIG) which is introduced in the next section. The
resulting confidence scores are weighted according to the similarity of the target
user and the neighbor (using Pearson correlation as a metric). These user-specific
predictions are finally combined and sorted by the weighted confidence scores.

Algorithm 1 NRR algorithm (sketch).

In: user, ratingDB, learnNeighborSize, predictNeighborSize, λ, α
Out: recommendedItems
(Offline:) UserFISs = CalcUserFISsIMSApriori(ratingDB, learnNeighborSize, λ, α)
neighborhood = user ∪ findNeighbors(user, predictNeighborSize, ratingDB)
recommendedItems = ∅
for all u ∈ neighborhood do

userRecs = Recommend(u,buildEFIG(UserFISs(u)))
weightedUserRecs = adjustConfidenceScoresBySimilarity(userRecs, user, u)
recommendedItems = recommendedItems ∪ weightedUserRecs

end for
recommendedItems = sortItemsByAdjustedScores(recommendedItems)

The Extended Frequent Itemset Graph. The Frequent Itemset Graph
(FIG) as proposed in [MDLN01] is a data structure to organize the frequent
itemsets in a way that allows us to generate recommendations directly from the
frequent itemsets (i.e., without the need to derive all association rules first). Fig-
ure 3(a) shows such a graph in which the elements of the frequent itemsets are
lexicographically sorted and organized in a tree structure where the size of the
itemsets are increased on each level. Given, for example, a set of past transac-
tions T = {A,D} of user u, recommendations can be produced by traversing the
tree in depth-first order and looking for supersets of {A,D} in the next level of
the graph. In the example, given the superset {A,D}, C could be recommended
to u. The solid arrows in the figure indicate how the graph would be traversed
in depth-first order.

Since, however, the assumption that “any subset of a frequent itemset must
be frequent” does not hold when using multiple minimum-support values, the
standard FIG-based method has to be extended. Let us assume that in the
example Figure 3(a) the itemsets {D} and {C,D} are not frequent, although
they are subsets of the frequent itemset {A,D} and {A,C,D} respectively. We
could therefore not recommend {A} to users who purchased {C,D} or {D} alone
although this would be plausible.

In our work, we solve this problem by extending the FIG in a way that it
also contains all subsets of the frequent itemsets and connect these additional
nodes with their supersets as shown in Figure 3(b). In order to find frequent
itemsets like {A,C,D} from {C,D} we re-start the depth-first search on the
not-yet-visited parts of the subgraph beginning from the additional nodes. Note

13

(a) Example for an Frequent Itemset Graph. (b) Example for an Extended Frequent Item-
set Graph.

Fig. 2. Extended Frequent Itemset Graph approach.

that the negative effects on the scalability of the approach itself are very limited,
because only small portions of the graph have to be analyzed in these additional
traversals.

4 Experimental Evaluation

The proposed NRR algorithm has been evaluated in an experimental study on
different data sets. In particular, the predictive accuracy was measured using
different sparsity levels and compared to (a) a recommender based on IMSApriori
and a classical prediction scheme and (b) the standard correlation-based kNN-
method. In the following, we will summarize the findings of this evaluation.

4.1 Experimental Setup and Evaluation Metrics

Data sets. As data sets for the evaluation, we used the 100k-MovieLens rating
database consisting of 100,000 ratings provided by 943 users on 1,682 items and
a snapshot of the Yahoo!Movies data set containing 211,231 ratings provided by
7,642 users on 11,915 items3. Regarding the user characteristics, the MovieLens
data set only contains users who have rated at least 20 items; the minimum
number of rated items per user in the Yahoo! data set is 10. In addition, in the
Yahoo! data set, each item was at least rated by one user.

In order to test our NRR scheme also in settings with low data density, we
varied the density level of the original data sets by using subsamples of different
sizes of the original data set as described in [SKKR01]. The smallest subsample
contained 10% of the original data. In this subsample, the average number of
ratings per user was around 10 as opposed to 100 for the original MovieLens
data set. Further measurements were taken in steps of 10% up to the 90% data

3 http://www.grouplens.org/node/73, http://webscope.sandbox.yahoo.com

14

set. Four-fold cross-validation was performed for each data set; in each round,
the data sets were split into a 75% training set and a 25% test set.

Accuracy metrics. In the study, we aim to compare the predictive accuracy of
two rule mining-based methods and the kNN-method. We follow the evaluation
procedure proposed in [NM03a] and proceed as follows. First, we determine the
set of existing “like” statements (ELS) in the 25% test set and retrieve a top-
N recommendation list of length |ELS| with each method based on the data
in the training set4. In the kNN-case, the rating predictions are converted into
“like” statements as described in [SMB07], where ratings above the user’s mean
rating are interpreted as “like” statements. The set of predicted like statements
returned by a recommender shall be denoted as Predicted Like Statements (PLS),
where |PLS| ≤ |ELS|.

We use standard information retrieval accuracy metrics in our evaluation.

Precision is defined as |PLS ∩ ELS|
|PLS| and measures the number of correct predic-

tions in PLS. Recall5 is measured as |PLS ∩ ELS|
|ELS| and describes how many of

the existing “like” statements were found by the recommender.
In the evaluation procedure, recommendations and the corresponding pre-

cision and recall values were calculated for all users in the data set and then
averaged. These averaged precision and recall values are then combined in the
usual F-score, where F = 2 ∗ precision∗recall

precision+recall .

Algorithm details and parameters. Regarding the algorithms, note that
we used Pearson correlation as a similarity metric both for the kNN-baseline
method and for determining the neighborhood in the NRR algorithm. For the
kNN-method, we additionally applied default voting and used a neighborhood-
size of 30, which was determined as an optimal choice in [SKKR01].

The IMSApriori implementation used in the experiments corresponds to
above-described algorithm and learns the rules from the whole database of trans-
actions. Recommendations are generated by using the Extended Frequent Item-
set Graph structure.

For the NRR method, two further parameters can be varied: neighborhood-
size-learn is the number of neighbors used to learn association rules; neighborhood-
size-predict determines on how many neighbors the predictions should be based.
The sensitivity of these parameters were analyzed by conducting multiple ex-
periments on the MovieLens data set with a fixed density level of 70%. The
value of the parameter neighborhood-size-predict was empirically determined to
be 100, see Figure 3 (a). To analyze the sensitivity of this parameter, we per-
formed experiments in which we varied the number of neighbors used for making
predictions and fixed the parameter neighborhood-size-learn at 30 as suggested
as an optimal value for this data set in literature.

4 The top-N recommendation lists are created either based on the confidence of the
producing rule or based on the prediction score of the kNN-method.

5 In [NM03a], this metric is called coverage.

15

We can observe from the figure that the recall value increases from 46% to
61% when moving from a prediction neighborhood size of 10 to 100. At the same
time, the precision value stays rather constant at 65% and does not decrease.
Afterwards, we fixed the parameter neighborhood-size-predict at 100 and ana-
lyzed the sensitivity of neighborhood-size-learn, see Figure 3 (b). It can be seen
that the initial value of 30 was actually a good choice for this parameter.

40

45

50

55

60

65

70

40%

45%

50%

55%

60%

65%

70%

10 20 30 40 50 60 70 80 90 100 110 120

F1

P
re

ci
si

o
n

/R
e

ca
ll

(a) neighborhood-size-predict

Precision Recall F1

40

45

50

55

60

65

70

40%

45%

50%

55%

60%

65%

70%

10 20 30 40 50 60 70 80 90 100 110 120

F1

P
re

ci
si

o
n

/R
e

ca
ll

(b) neighborhood-size-learn

Precision Recall F1

Fig. 3. Sensitivity of the parameters neighborhood-size-predict (a) and -learn (b).

Finding a suitable lower support threshold value (LS) for the rule learning
methods is challenging. In [MDLN01], the authors argue that higher LS values
are in general more desirable because they lead to a smaller model size, as the
number of frequent itemsets decreases, which in turn leads to good scalability.
Higher LS values however may lead to the effect that no rules for rare items can
be found.

In addition, remember that in IMSApriori-based algorithms the minimum
item support MIS for each item has to be at least LS, i.e., MIS(i) >= LS,
for each item i. Therefore, when using a high global LS value, the problem
can arise that each item gets the same MIS value, i.e., the value of the global
minimum support threshold LS. As a consequence, the IMSApriori algorithm
would behave like the standard Apriori algorithm which uses one global lower
support threshold value. Note that this phenomenon can also appear when the
density level of the data set is very low. A low density level implies low item
support values, which can result in MIS values that are below the LS value.

In order to establish fair conditions in our study, we have used individual,
empirically-determined LS values for each rule learning algorithm (IMSApriori:
3%; NRR: 19%), which we have then used for all density levels and data sets6.

Regarding computational complexity, the proposed NRR algorithm runs the
IMSApriori algorithm once for each user, which can be done offline during the
model building phase. Each IMSApriori execution however only has to consider a

6 Our current work includes a more detailed analysis of optimal parameter values for
specific density levels.

16

relatively small fraction of the whole database of transactions, or, more precisely,
at most neighborhood-size-learn transactions, when learning rules. On a standard
desktop computer (Intel Core 2 Duo CPU, 2.4 GHz, 3GB RAM), learning the
rules for all users takes about 11 minutes for the MovieLens data set at a density
level of 70%. The size of the resulting model is determined by the number of ex-
isting frequent itemsets. In the baseline IMSApriori recommender, 316 frequent
itemsets were found. When using the NRR algorithm, the average model size is
about 45 frequent itemsets for each user (MovieLens data set, density-level of
70%). The model size of course strongly depends on the selected LS values.

Results. Figure 4 summarizes the evaluation results for the three algorithms
kNN, IMSApriori and NRR. The table shows the average values of the F-score
as well as the precision and recall values for the different density levels for both
the MovieLens and the Yahoo! data set.

Fig. 4. Overall average F1, precision and recall values for different density levels.

The results show that our NRR algorithm consistently outperforms the kNN
algorithm on the F1-measure and is better than the IMSApriori method in nearly
all settings for both data sets. The observed accuracy improvements are partic-
ularly high for low density levels, i.e., for sparse data sets. With higher density
levels, the relative improvements become smaller for both data sets. As a side-
observation, we can see that in settings with medium and higher density levels,
also the pure IMSApriori version outperforms the kNN-method, which was not
analyzed in previous research. Note that the accuracy gains are stronger for

17

the MovieLens data set, which can be partially attributed to the fact that the
optimal parameters were empirically determined based on this data set.

A closer look at the precision and recall values shows that NRR has particular
advantages with respect to the recall measure, i.e., NRR is capable of retrieving
more relevant items than the other algorithms while at the same time precision
values remain at a comparably high level. Again, this effect is particularly strong
when the data sets are very sparse, which is a common situation in most real-
world settings.

5 Summary

Association rule mining is a powerful method that has been successfully used for
various personalization and recommendation tasks in the past; see for example
its recent application for social tag prediction ([HRGM08], [WHD09]).

In this paper we have shown how the personalization of the learned model
in rule mining-based approaches to recommendation can help to increase the
accuracy of the system’s prediction while at the same time the advantages of
model-based approaches such as robustness against attacks and the possibility
to generate explanations can be preserved.

Additional computational costs for the personalization task arise only in the
offline phase in which multiple smaller frequent itemset collections are computed
instead of one large one. At run-time, data structures such as the Extended
Frequent Itemset Graph can be used to efficiently generate recommendations
online. Furthermore, given the explicit and comprehensible nature of the frequent
itemsets, these (personalized) frequent itemsets can be easily manually extended
with additional manually-engineered domain rules.

Our future work includes the evaluation of our approach on further data sets
and a comparison with further algorithms. In addition, in our current work, we
conduct experiments in which we first perform probabilistic clustering on the
user base and then mine the frequent itemsets for each cluster. While we might
not expect significant accuracy gains, this approach will lead to a substantially
reduced model size which further improves the scalability of our approach. In
addition, the neighborhood-size parameter will not be required in the training
phase when a method like AutoClass [CKS+93] is used to determine the optimal
number of clusters automatically.

References

[AS94] Rakesh Agrawal and Ramakrishnan Srikant, Fast algorithms for mining as-
sociation rules in large databases, Proceedings of the 20th International
Conference on Very Large Data Bases (VLDB’94) (Santiago de Chile,
Chile), 1994, pp. 487–499.

[AT05] Gediminas Adomavicius and Alexander Tuzhilin, Toward the next genera-
tion of recommender systems: A survey of the state-of-the-art and possible
extensions, IEEE Transactions on Knowledge and Data Engineering 17
(2005), no. 6, 734–749.

18

[CKS+93] Peter Cheeseman, James Kelly, Matthew Self, John Stutz, Will Taylor,
and Don Freeman, Autoclass: A bayesian classification system, Readings
in knowledge acquisition and learning: automating the construction and
improvement of expert systems, Morgan Kaufmann, 1993, pp. 431–441.

[HRGM08] Paul Heymann, Daniel Ramage, and Hector Garcia-Molina, Social tag pre-
diction, Proceedings 31st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR’08) (Singapore,
Singapore), 2008, pp. 531–538.

[KR09] R. Uday Kiran and P. Krishna Reddy, An improved multiple minimum
support based approach to mine rare association rules, Proceedings of the
IEEE Symposium on Computational Intelligence and Data Mining, CIDM
2009 (Nashville, TN, USA), 2009, pp. 340–347.

[LAR02] W. Lin, S. Alvarez, and C. Ruiz, Efficient adaptive-support association rule
mining for recommender systems, Data Mining and Knowledge Discovery
6 (2002), 83–105.

[LHM99] Bing Liu, Wynne Hsu, and Yiming Ma, Mining association rules with mul-
tiple minimum supports, Proceedings of the 5th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD’99) (San
Diego, CA, United States), 1999, pp. 337–341.

[MDLN01] Bamshad Mobasher, Honghua Dai, Tao Luo, and Miki Nakagawa, Effective
personalization based on association rule discovery from web usage data,
Proceedings of the 3rd International Workshop on Web Information and
Data Management (WIDM’01) (Atlanta, Georgia, USA), 2001, pp. 9–15.

[NM03a] Miki Nakagawa and Bamshad Mobasher, A hybrid web personalization
model based on site connectivity, Proceedings of the 2003 WebKDD Work-
shop (Washington, DC, USA), 2003, pp. 59–70.

[NM03b] , Impact of site characteristics on recommendation models based
on association rules and sequential patterns, Proceedings of the IJCAI’03
Workshop on Intelligent Techniques for Web Personalization (Acapulco,
Mexico), 2003.

[SKKR00] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl, Analysis
of recommendation algorithms for e-commerce, Proceedings of the 2nd ACM
Conference on Electronic Commerce (EC’00) (Minneapolis, MN, USA),
2000, pp. 158–167.

[SKKR01] Badrul Sarwar, George Karypis, Joseph Konstan, and John Reidl, Item-
based collaborative filtering recommendation algorithms, Proceedings of the
10th International Conference on World Wide Web (WWW’01) (Hong
Kong), 2001, pp. 285–295.

[SMB07] J. J. Sandvig, Bamshad Mobasher, and Robin Burke, Robustness of col-
laborative recommendation based on association rule mining, Proceedings
of the 2007 ACM Conference on Recommender Systems (RecSys’07) (Min-
neapolis, MN, USA), 2007, pp. 105–112.

[WHD09] Jian Wang, Liangjie Hong, and Brian D. Davison, Tag recommendation us-
ing keywords and association rules (RSDC’09), ECML PKDD Discovery
Challenge 2009 (DC09) (Bled, Slovenia), vol. 497, CEUR Workshop Pro-
ceedings, 2009, pp. 261–274.

[Zan08] Markus Zanker, A collaborative constraint-based meta-level recommender,
Proceedings of the 2008 ACM Conference on Recommender Systems (Rec-
Sys’08) (Lausanne, Switzerland), 2008, pp. 139–146.

19

Ontology-Based Collaborative Recommendation

Ahu Sieg, Bamshad Mobasher, Robin Burke

Center for Web Intelligence
DePaul University, Chicago, Illinois, USA
{asieg, mobasher, rburke}@cdm.depaul.edu

Abstract. Recommender systems have emerged as critical tools that
help alleviate the burden of information overload for users. Since these
systems have to deal with a variety of modes of user interactions, collabo-
rative recommendation must be sensitive to a user’s specific context and
changing interests over time. Our approach to building context-sensitive
collaborative recommendation is a hybrid one that incorporates semantic
knowledge in the form of a domain ontology. User profiles are defined rel-
ative to the ontology, giving rise to an ontological user profile. In this pa-
per, we describe how ontological user profiles are learned, incrementally
updated, and used for collaborative recommendation. We empirically
show that the ontological approach significantly improves the accuracy
and coverage of recommendations.

1 Introduction

Recommender systems [1] have become essential tools in assisting users to find
what they want in increasingly complex information spaces. Collaborative rec-
ommender systems typically generate recommendations by identifying neigh-
borhoods for the target user consisting of other users with similar interests or
preferences [2].

Typical collaborative recommenders rely on profiles of users represented as
flat vectors of ratings or preference scores. Thus, the same collection of user pref-
erences across all items or resources is used as the basis for generating recom-
mendations regardless of the user’s current information context or task-related
needs. Consider the following example. Suppose Steve buys and rates mystery-
detective fiction novels for his own entertainment (“Da Vinci Code”), books on
computer science topics (“Python Programming”) for work-related purposes,
children’s books (“Green Eggs and Ham”) for his daughter. It makes little sense
to represent Steve’s interest in books in a single representation that aggregates
all of these disparate interests without some acknowledgment that they represent
different sorts of needs and contexts. The system needs to know the difference
between computer books and children’s books, as well as Steve’s current context
(buying a book for his personal reading or for his work), in order to make the
most useful recommendation. Furthermore, a system that is aware of this differ-
ence may also have the capability of recognizing similarities among syntactically
disparate items, and be able to recommend a book on Perl scripting to Steve
because he has shown an interest in Python programming.

20

This scenario exemplifies why it is desirable for intelligent and personalized
information systems to be capable of seamlessly integrating knowledge from
three sources: the short-term user activity, representing immediate user inter-
ests; long-term user profiles, representing established preferences; and existing
ontologies that provide an explicit representation of the domain of interest. Such
systems will be able to leverage a variety of sources of evidence to provide the
best personalized experience for the user, including both the semantic evidence
associated with the user’s individual interaction, as well as social knowledge
derived collaboratively from peer users.

In this paper, we present an approach to collaborative recommendation that
effectively incorporates semantic knowledge from ontologies with collaborative
user preference information. The salient feature of our framework is the notion
of ontological user profiles which are instances of a pre-existing domain ontology
with numerical annotations associated with concepts derived from users’ past
behavior and preferences. The ontology represents concepts and relationships
in a particular domain of interest, books for example. In this paper, we use
the term ontology to refer to a hierarchical concept structure and instances
within the knowledge base. Rather than being associated with single atomic
entities like individual books, users’ choices and preferences are associated with
relevant concepts in the ontology. So, the fact that Steve buys computer books
such as “Python Programming” can be readily distinguished from his interest
in children’s books because they occupy disparate places in the book ontology.

We present an algorithm based on spreading activation to incrementally up-
date these user profiles, as a result of ongoing user interaction, in a way that
takes into account relationships among concepts in the ontology as well as the
collaborative evidence derived from the ontological profiles of similar users. Our
approach to recommendation generation is an extension of standard user-based
collaborative framework in which user similarities are computed based on their
interest scores across ontology concepts, instead of their ratings on individual
items. Our experimental results for collaborative recommendation, based on real
ratings in the book domain, show significant improvement in prediction accuracy
as well as coverage when compared to standard collaborative filtering.

2 Related Work

Widely used collaborative filtering methods can be divided into two main cat-
egories including Memory-based (user-based) and Model-based (item-based) al-
gorithms [3, 4]. User-based techniques [5] generally model the user as a vector
of item ratings and compare these vectors using a correlation or similarity mea-
surement. Item-based algorithms [6] explore the relationships among items first,
rather than the relationships between users, thus avoiding the bottleneck of hav-
ing to search for neighbors among a large user population of potential neighbors.

Content-based filtering methods [7] have also been used in the context of
recommending books and Web pages, where content descriptors are available.
Rather than using simple feature vector models, our work differs from existing

21

approaches by taking advantage of the deeper semantic knowledge in an existing
ontology for generating recommendations.

Many recommender systems suffer from the cold-start problem of handling
new items or new users. Hybrid recommenders [8] combine semantic or content-
knowledge with collaborative filtering to deal with this problem. Knowledge-
based recommender systems use knowledge about users and products to pursue
a knowledge-based approach to generating a recommendation, reasoning about
what products meet the user’s requirements [9]. Our work can be described as
a knowledge-based collaborative hybrid.

The availability of large product taxonomies such as Amazon.com and Open
Directory Project has allowed researchers to incorporate semantic information
into recommender systems [10]. In order to address rating sparsity, Ziegler et
al. [11] classify products by topics based on taxonomic information. Cho and
Kim [12] have utilized a product taxonomy to overcome scalability issues. In [13],
spreading activation techniques are used to find related concepts in the ontology
given an initial set of concepts and corresponding initial activation values.

In our approach, the hierarchical structure of an underlying ontology is used
explicitly and automatically in the learning and incremental updating of user
profiles. There has been little work in the area of ontological user modeling
and even less in the application of such models to Web personalization [14].
Our research follows the lead of other systems [15] that use ontologies to medi-
ate information access, but these systems have generally not incorporated user
modeling.

3 Augmenting Collaborative Recommendation

We take the goal of the recommender system to be the presentation of person-
alized recommendations for a particular target user. To accomplish this task,
there are three broad categories of knowledge that may come into play: social,
individual, and content knowledge [16]. Social knowledge covers what we know
about the large community of users other than the target user, whereas individ-
ual knowledge refers to what we know about the target user. Content knowledge
encapsulates domain knowledge about the items being recommended.

Recommender systems based on collaborative filtering utilize explicit or im-
plicit ratings collected from a population of users. The standard k-Nearest Neigh-
bor (kNN) algorithm operates by selecting the k most similar users to the target
user, and formulates a prediction by combining the preferences of these users.
Without the advantage of deeper domain knowledge, collaborative filtering mod-
els are limited in their ability to reason about the relationships between item
features and about the underlying factors contributing to the final recommen-
dations.

Our goal is to augment collaborative filtering by incorporating domain knowl-
edge in the form of an ontology to enhance personalized recommendations. The
ability to learn from user interaction is a critical factor for a good recommender
system. In our ontology-based user model, the user behavior is represented not

22

as entries in a uniform vector, but as annotations to an ontology. We refer to
this structure as the ontological user profile. In our previous work [17], ontolog-
ical user profiles are utilized for Web search personalization based on individual
users’ interests. In this paper, we focus on a collaborative approach for ontology-
based recommendation.

We maintain and update the ontological user profiles based on the user be-
havior and on-going interaction. For example, when Steve buys a book on pro-
gramming in Python, the user profile associates this fact with the Python pro-
gramming language concept via an annotation, and may activate other nearby
concepts such as the Perl programming language. The system would not, for
example, activate nodes associated with snakes or with British comedy troupes,
although these have a syntactic relationship to the word “python”. We utilize
profile normalization so that the relative importance of concepts in the profile
reflect the changing interests and varied information contexts of the user.

An ontological approach to user profiling has proven to be successful in ad-
dressing the cold-start problem in recommender systems where no initial infor-
mation is available early on upon which to base recommendations [18]. Using
ontologies as the basis of the profile allows the initial user behavior to be matched
with existing concepts in the domain ontology and relationships between these
concepts. Therefore, our approach strengthens the knowledge sources discussed
above by providing an enriched representation of social and individual knowl-
edge. Rather than developing the domain ontology ourselves, we rely on existing
hierarchical taxonomies such as Amazon.com’s Book Taxonomy.

Since collaborative filtering is based on the ratings of the neighbors who
have similar preferences, it is very important to select the neighbors properly
to improve the quality of the recommendations. Rather than computing user
similarity on the whole set of items, we use a completely novel approach where
the similarity among users is computed based on the users’ level of interest for
each concept. We compare the ontological user profiles for each user to form
semantic neighborhoods. Because the number of items is often very large and so
is the diversity among items, users who have similar preferences in one category
may have totally different judgments on items of another kind [19]. Our approach
allows us to take advantage of the deeper semantic knowledge in the domain
ontology when selecting neighbors based on the interest level for each concept
in the user profiles.

4 Ontology-Based Personalized Recommendation

For our purposes, an ontology is simply a hierarchy of topics, where the topics
can be used to classify items being recommended. There is one main ontology on
which all user profiles are based – we call this the reference ontology. An onto-
logical user profile is a set of nodes from the reference ontology, each annotated
with an interest score, which represent the degree of interest that the user has
expressed in that topic or concept. Each node in the ontological user profile is
a pair, 〈Cj , IS(Cj)〉, where Cj is a concept in the ontology and IS(Cj) is the

23

interest score annotation for that concept. Whenever the system acquires new
evidence about user interests, such as purchases, page views, or explicit ratings,
the user profile is updated with new interest scores.

The hierarchical relationship among the concepts is taken into consideration
for maintaining the ontological user profiles as we update the annotations for
existing concepts. Each concept in the user profile is annotated with an interest
score which has an initial value of one. As the user interacts with the system (i.e.
rating a new book), the ontological user profile is updated and the annotations
for existing concepts are modified. As a result, the profiles are maintained and
updated incrementally based on the user’s ongoing behavior.

4.1 Learning Profiles by Spreading Activation

We use Spreading Activation to incrementally update the interest score of the
concepts in the user profiles. In our current implementation, the users’ item
based ratings are utilized to propagate interest scores in the user profiles. The
process of learning an ontological user profile is depicted in Figure 1 using a
portion of the ontology as an example.

Fig. 1. Updating an Ontological User Profile

We use a very specific configuration of spreading activation, depicted in Algo-
rithm 1, for the sole purpose of maintaining interest scores within a user profile.
The ontological user profile is treated as the semantic network and the interest
scores are updated based on activation values. The algorithm has an initial set
of concepts from the ontological user profile. The main idea is to activate other
concepts following a set of weighted relations during propagation and at the end
obtain a set of concepts and their respective activations.

As any given concept propagates its activation to its neighbors, the weight
of the relation between the origin concept and the destination concept plays an
important role in the amount of activation that is passed through the network.

24

Algorithm 1: Spreading Activation Algorithm
Input: Ontological user profile with interest scores and an item of interest to the user, i
Output: Ontological user profile with updated interest scores

CON = {C1, ..., Cn}, user profile concepts with interest scores
IS(Cj) and Activation(Cj), interest score and activation value for concept Cj

// Step 1: Spreading Activation
Initialize priorityQueue;
Set initial Activation of all concepts to 0;
foreach Cj ∈ CON do

begin

if (i ∈ Cj) then
Activation(Cj) = IS(Cj);
priorityQueue.Add(Cj);

end

end

end

while priorityQueue.Count > 0 do

Sort priorityQueue; // activation values(descending)

Cj = priorityQueue[0]; // first item(spreading concept)
priorityQueue.Dequeue(Cj); // remove item
if passRestrictions(Cj) then

linkedConcepts = GetLinkedConcepts(Cj);
foreach Cl in linkedConcepts do

Activation(Cl)+ = Activation(Cj) ∗ Weight(Cj , Cl);
priorityQueue.Add(Cl);

end

end

end

// Step 2: Profile Normalization

foreach Cj ∈ CON do
IS(Cj) = IS(Cj) + Activation(Cj);

n =
√

n + (IS(Cj))2 ; // square root of sum of squared interest scores

end

foreach Cj ∈ CON do

IS(Cj) = (IS(Cj) ∗ k)/n; // normalize to constant length, k
end

Thus, a one-time computation of the weights for the relations in the network
is needed. Since the nodes are organized into a concept hierarchy derived from
the domain ontology, we compute the weights for the relations between each
concept and all of its subconcepts using a measure of containment. The weight,
Weight(Cj , Cs), of the relation for concept Cj and one of its subconcepts Cs is
computed based on the number of items that are categorized under each concept.
Once the weights are computed, we normalize the weights to ensure that the total
sum of the weights of the relations between a concept and all of its subconcepts
equals to one.

The algorithm is executed for each item of interest, such as a book. For each
iteration of the algorithm, the initial activation value for each concept in the
user profile is reset to zero. The concepts which contain the specific item are
activated and the activation value, Activation(Cj), for each activated concept
Cj is set to the existing interest score, IS(Cj), for that specific concept. If there
is no interest information available for a given concept, then IS(Cj) equals to
one. The concept with the highest activation value gets removed from the queue
after propagating its activation to its neighbors. The amount of activation that

25

is propagated to each neighbor is proportional to the weight of the relation. The
neighboring concepts which are activated and are not currently in the priority
queue are added to queue, which is then reordered. The process repeats itself
until there are no further concepts to be processed. For a given spreading concept,
we can ensure the algorithm processes each edge only once by iterating over the
linked concepts only one time. The order of the iteration over the linked concepts
does not affect the results of activation. The linked concepts that are activated
are added to the existing priority queue, which is then sorted with respect to
activation values.

After spreading activation, the interest scores in the profile are normalized.
First the resulting activation values are added to the existing interest scores.
The interest scores for all concepts are then treated as a vector, which is nor-
malized to a unit length using a pre-defined constant, k, as the length of the
vector. The effect of normalization is to prevent the interest scores from contin-
uously escalating throughout the network. As the user expresses interests in one
set of concepts, the scores for other concepts may decrease. For the long-term
maintenance, the concepts in the ontological user profile are updated with the
normalized interest scores.

4.2 Semantic Neighborhoods and Prediction Computation

In standard collaborative filtering, the similarity between the target user, u,
and a neighbor, v, is calculated by the Pearson’s correlation coefficient. Our
alternative similarity metric uses the interest scores of these users’ corresponding
ontological profiles. First, we turn the ontological user profiles into flat vectors
of interest scores over the space of concepts. We then compare the user profiles
to figure out how distant each user’s profile is from all other users’ profiles.
The distance between the target user, u, and a neighbor, v, is calculated by the
Euclidean distance formula defined below:

distanceu,v =

√

∑

j∈C

(IS(Cj,u)−IS(Cj,v))2

where C is the set of all concepts in the reference ontology, IS(Cj,u) and IS(Cj,v)
are the interest scores for concept Cj for the target user u and neighbor v,
respectively. Once all distances have been computed, we normalize the distance
between the target user u and a neighbor v, then calculate a similarity value
based on the inverse of the normalized distance.

The most similar k users are selected to generate the semantic neighborhoods.
To further improve the quality of the neighborhoods, we use a concept-based
filtering for the neighbors where a neighbor is included in the final prediction
algorithm only if that neighbor’s interest score for the specific concept is greater
than their mean interest scores in their user profile. Our resulting semantic
neighborhoods are not only based on similar users’ explicit ratings for an item,
but also based on the degree of interest those users have shown for the topic of
a given item.

26

The ability to generate good recommendations relies heavily on the accurate
prediction of a user’s rating for an item they have not seen before. Our prediction
algorithm uses a variation of Resnick’s standard prediction formula [4] defined
below:

pu,i = r̄u +

∑

v∈V

simu,v ∗ (rv,i−r̄v)

∑

v∈V

simu,v
,

where r̄u is the mean rating for the target user, V is the set of k similar users,
r̄v is the mean rating for a neighbor, simu,v is the similarity described above.

We utilize the semantic evidence in the ontology for computing the mean
rating for a user. For the mean rating of a target user or one of its neighbors, r̄u

and r̄v respectively, we maintain two different values including the user’s overall
mean rating and user’s concept-based mean rating. If an item belongs to only
one concept, the user’s concept-based mean rating is the user’s average rating for
all books that belong to that specific concept. In the case where a book belongs
to multiple concepts, the concept-based mean rating becomes the user’s average
rating for all books that belong to these concepts. If the user’s concept-based
mean rating does not exist, the prediction formula uses the user’s overall mean
rating. Otherwise, the user’s concept-based mean rating is used.

5 Experimental Evaluation

In the research community, the performance of a recommender system is mainly
measured based on its accuracy with respect to predicting whether a user will like
a certain item or not [20]. Our experimental evaluation focuses on comparing
the quality of the recommendations based on our ontological approach versus
standard collaborative filtering.

5.1 Experimental Data Sets and Metrics

Our data set consists of a subset of the book ratings that were collected by
Ziegler in a 4-week crawl from the Book-Crossing community[11]. For each dis-
tinct ISBN, a unique identifier for the books in the dataset, we mined Ama-
zon.com’s Book Taxonomy and collected the category, title, URL, and editorial
reviews for the specific book. Our resulting reference ontology includes 4,093
concepts and a total of 75,646 distinct books that are categorized under various
concepts.

Only the explicit ratings, expressed on a scale from 1-10, are taken into
account in our experiments. Our data set includes 72,582 book ratings belonging
to those users with 20 or more ratings. The data set was converted into a user-
item matrix that had 1,110 rows (i.e. users) and 27,489 columns (i.e. books). For
evaluation purposes, we used 5-Fold cross-validation. For each fold, 80% of the
book ratings were included in the training set, which was utilized to compute
similarity among users. The remaining 20% of the book ratings were included

27

in the test set, which was used for predicting ratings. The advantage of K-Fold
cross-validation is that all the examples in the dataset are eventually used for
both training and testing.

To measure prediction accuracy, we rely on a commonly used metric Mean
Absolute Error (MAE), which measures the average absolute deviation between

a predicted rating and the user’s true rating: MAE =

∑

|pu,i−ru,i|

N
, where N

is the total number of ratings over all users, pu,i is the predicted rating for
user u on item i, and ru,i is the actual rating. The lower the MAE, the more
accurately a recommender systems predicts user ratings. One main advantage of
MAE is that it is a statistical metric which allows for testing the significance of a
difference between the mean absolute errors of two systems. For our second type
of evaluation, we generate a list of Top-N recommendations for each user. We
compare the recommendations to the user’s actual preferences and consider each
match a hit. We use a Hit Ratio metric to compare our approach to standard
collaborative filtering.

5.2 Experimental Methodology and Results

The first step in our experimental evaluation was to compute user-to-user sim-
ilarity for the standard kNN algorithm using the Pearson’s correlation based
on the training data. Next, we used the books in the training set to generate
ontological user profiles. Each user started out with an ontological user profile
where all interest scores were initialized to one, this simulates a situation where
no initial user interest information is available. For each book that was rated
by a user, we performed our spreading activation algorithm to update interest
scores in the ontological user profile for that specific user. In order to ensure the
interest in the profiles is propagated based on strong positive evidence, only the
items with ratings that were equal to or greater than the user’s overall average
rating were utilized for spreading activation. After an ontological user profile
was created for each user based on their ratings, we utilized our semantic neigh-
borhood generation approach explained above to compute the similarity among
user profiles.

We calculated the MAE across the predicted ratings produced by each al-
gorithm. For both the standard kNN and our ontological approach, the most
similar k users were selected to compute the prediction for each item in the test
set.

To generate a recommendation list for a specific user, we computed a pre-
dicted rating for all items that were rated by that user’s neighbors, excluding the
items that were rated by the user. With this type of an evaluation, the goal is
to generate recommendations that the user has not seen before. The recommen-
dation list was sorted in descending order with respect to the predicted rating
for each item. Therefore, items with higher predicted ratings are included in the
Top-N recommendations. We compared the recommendation list to the user’s
actual ratings for items in the test set.

We ran our experiments for different values for the neighborhood size k, rang-
ing from 20 to 200. For each value of k, the MAE was lower for predictions using

28

our ontological approach than the MAE across the predictions generated with
the standard kNN algorithm. Our ontological approach also provides much bet-
ter coverage, which is a measure for the percentage of items that a recommender
system can provide predictions for. As depicted in Table 1, we computed three

Algorithm Overall Ratings Actual Ratings Default Ratings Coverage

Standard kNN 1.139 1.245 1.049 45.9%
Ontological kNN 1.112 1.197 1.025 50.6%

Table 1. Mean Absolute Error, k = 200 - Standard kNN vs. Ontological Approach

different MAE values for each algorithm using overall ratings, actual ratings,
and default ratings. The MAE across actual ratings takes into account only
those ratings where an actual predicted rating can be made based on the rat-
ings of neighbors as opposed to the predicted ratings based on the user’s default
rating due to lack of ratings from neighbors.

(a) Mean Absolute Error (b) Hit Ratio

Fig. 2. Standard kNN vs. Ontological Approach, k = 200

Inspecting the MAE across the actual predicted ratings separately than the
default ratings is important in order to effectively compare the different algo-
rithms presented in this paper. In [21], the authors explore the importance of
the influence of neighbors in collaborative filtering and present their finding on
three commonly used, large-scale, real-world datasets including MovieLens, Net-
Flix, and BookCrossing. Due to the high sparsity of the Book-Crossing dataset,
user-based collaborative filtering performs particularly poorly, with only 53% of
neighborhood estimates actually contributing to better quality predictions than
chance [21]. One additional advantage of our approach is that we are able to
improve the predicted ratings based on the user’s default rating since we use
a concept-based mean as opposed to taking the user’s average across all of the
items rated by that user.

29

The comparative results with the MAE values across actual predicted ratings
for k = 200 are depicted in Figure 2(a). The MAE values were confirmed to be
significantly different using the ANOVA significance test with a 99% confidence
interval, p-Value = 6.9E-11. Thus, we can confidently conclude that the pre-
diction accuracy using our ontological approach is higher than the prediction
accuracy of the standard kNN algorithm.

Next, we present our Hit Ratio results to compare standard kNN with our
ontological approach in terms of Top-N Recommendation. The Hit Ratio is com-
puted by determining whether a hit exists within the top N items in the list for
each value of N, where N = 1 through N = 20. With this approach, the Hit
Ratio is either 0 or 1 for each value of N for each user. We then take an average
across all users in our data set. The recommendation lists for each user were
sorted in descending order with respect to the predicted rating for each item.
For each algorithm, the Hit Ratio results were based on the predicted ratings
using a neighborhood size of k = 200. As depicted in Figure 2(b), the Hit Ratio
for ontological kNN is significantly improved over standard kNN. These results
further validate that our ontological approach performs better as a recommender
system.

6 Conclusions and Outlook

We have presented our approach to collaborative recommendation that effec-
tively incorporates semantic knowledge from ontologies with collaborative user
preference information. Our approach not only outperforms traditional collabo-
rative filtering in prediction accuracy but also offers improvements in coverage.
Although accuracy metrics are important, in order to fully satisfy a user’s rec-
ommendation needs, other measures such as diversity of recommendation lists
and uniqueness of recommended items must be considered. In our future work,
we plan to further evaluate the advantages of our ontological approach in terms
of coverage, diversity, personalization, and cold-start performance.

References

1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender sys-
tems: A survey of the state-of-the-art and possible extensions. IEEE Transactions.
on Knowledge and Data Engineering 17(6) (2005) 734–749

2. Schafer, J.B., Frankowski, D., Herlocker, J.L., Sen, S.: Collaborative filtering rec-
ommender systems. In Brusilovsky, P., Kobsa, A., Nejdl, W., eds.: The Adaptive
Web: Methods and Strategies of Web Personalization. Volume 4321 of Lecture
Notes in Computer Science. Springer-Verlag, Berlin Heidelberg New York (2007)

3. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms
for collaborative filtering. In: Proceedings of the Fourteenth Annual Conference
on Uncertainty in Artificial Intelligence, San Francisco, CA (1998) 43–52

4. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: An open
architecture for collaborative filtering of netnews. In: Proceedings of the 1994 ACM
conference on Computer supported cooperative work, CSCW 1994, New York, NY
(2004) 175–186

30

5. Herlocker, J.L., Konstan, J., Borchers, A., Riedl, J.: An algorithmic framework for
performing collaborative filtering. In: Proceedings of the 22nd ACM Conference
on Research and Development in Information Retrieval, SIGIR 1999, Berkeley, CA
(August 1999)

6. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering
recommendation algorithms. In: Proceedings of the 10th international conference
on World Wide Web, WWW ’01, New York, NY (2001) 285–295

7. Mooney, R., Roy, L.: Content-based book recommending using learning for text
categorization. In: Proceedings of the fifth ACM conference on Digital libraries,
DL 2000, New York, NY (2000) 195–204

8. Burke, R.: Hybrid web recommender systems. In Brusilovsky, P., Kobsa, A.,
Nejdl, W., eds.: The Adaptive Web: Methods and Strategies of Web Personaliza-
tion. Volume 4321 of Lecture Notes in Computer Science. Springer-Verlag, Berlin
Heidelberg New York (2007)

9. Burke, R.: Knowledge-based recommender systems. In Kent, A., ed.: Encyclopedia
of Library and Information Systems. Volume 69. Marcel Dekker (2000)

10. Middleton, S., Shadbolt, N., Roure, D.C.D.: Ontological user profiling in recom-
mender systems. ACM Transactions on Information Systems 22(1) (2004) 54–88

11. Ziegler, C., McNee, S., Konstan, J., Lausen, G.: Improving recommendation lists
through topic diversification. In: Proceedings of the 14th international conference
on World Wide Web, WWW 2005, Chiba, Japan (May 2005)

12. Cho, Y., Kim, J.: Application of web usage mining and product taxonomy to
collaborative recommendations in e-commerce. Expert Systems with Applications
26(2) (2004) 233–246

13. Rocha, C., Schwabe, D., Aragao, M.P.: A hybrid approach for searching in the
semantic web. In: Proceedings of the 13th international conference on World Wide
Web, WWW 2004, New York, NY, USA (2004) 374–383

14. Gauch, S., Speretta, M., Chandramouli, A., Micarelli, A.: User profiles for person-
alized information access. In: The adaptive web, LNCS 4321. (2007) 54–89

15. Gauch, S., Chaffee, J., Pretschner, A.: Ontology-based personalized search and
browsing. Web Intelligence and Agent Systems 1(3-4) (2003)

16. Burke, R., Ramezani, M.: Matching recommendation domains and technologies.
In Kantor, P., Ricci, F., Rokach, L., Shapira, B., eds.: Handbook of Recommender
Systems, to appear. Springer (2010)

17. Sieg, A., Mobasher, B., Burke, R.: Web search personalization with ontological
user profiles. In: ACM Sixteenth Conference on Information and Knowledge Man-
agement, CIKM 2007, Lisbon, Portugal (November 2007)

18. Middleton, S., Shadbolt, N., Roure, D.D.: Capturing interest through inference
and visualization: Ontological user profiling in recommender systems. In: Proceed-
ings of the International Conference on Knowledge Capture, K-CAP 2003, Sanibel
Island, Florida (October 2003) 62–69

19. Truong, K., Ishikawa, F., Honiden, S.: Improving accuracy of recommender system
by item clustering. IEICE - Transactions on Information and Systems E90-D(9)
(2007) 1363–1373

20. Herlocker, J.L., Konstan, J., Terveen, L., Riedl, J.: Evaluating collaborative fil-
tering recommender systems. ACM Transactions on Information Systems 22(1)
(2004) 5–53

21. Rafter, R., O’Mahony, M., Hurley, N.J., Smyth, B.: What have the neighbours ever
done for us? a collaborative filtering perspective. In: Proceedings of the 17th Inter-
national Conference on User Modeling, Adaptation, and Personalization, UMAP
2009, Trento, Italy (2009) 355–360

31

Using Bayesian Networks To Infer Product
Rankings From User Needs

Sven Radde and Burkhard Freitag

Institute for Information Systems and Software Technology
University of Passau, 94030 Passau, Germany

{sven.radde,burkhard.freitag}@uni-passau.de

http://www.ifis.uni-passau.de/

Abstract. Customers are commonly not able to provide preferences
that are technical enough to be used in the internal algorithms of knowl-
edge-based recommender systems. In this paper, we present an approach
to use a Bayesian network to infer technical preferences from customer
answers obtained through a conversational elicitation process. The in-
ferred preferences can be used in conjunction with a variety of common
database ranking technologies to generate product recommendations.

Key words: Bayesian inference, ranking databases

1 Introduction

When recommending complex products to customers, a knowledge-based rec-
ommender system has to base its reasoning on the mostly technical product
properties that can be obtained using datasheets or similar sources of informa-
tion. To this end, several well-known techniques exist, such as database ranking
based on multi-attribute utility-theory or preference-based databases. However,
as a prerequisite for applying these techniques, customers would need to be able
to specify their wishes in technical terms. Experience reveals that this is far more
than what can be expected from the average customer, in particular for complex
technical product damains.

In this paper, we present a way to elicit preferences from customers by asking
them “soft” questions about their needs and expectations. From their answers,
preferences that serve as inputs to the afore-mentioned recommendation algo-
rithms can be inferred by using a Bayesian network. We describe a utility-based
approach to obtain product recommendations and provide a method to use the
inferred knowledge as pareto-preferences.

The rest of this paper is organized as follows:
In section 2, we present a use case and describe the requirements arising

from it. The process of inferring utility values for technical product attributes
from customer answers is detailed in section 3. In section 4, we elaborate on how
to make use of the inferred knowledge by employing a MAUT-based approach
as well as other techniques such as pareto-based preferences. We review some
related work in section 5 before concluding in section 6.

32

2 Sven Radde and Burkhard Freitag

2 Use Case

Today’s cellphones are complex technical devices, fulfilling a wide range of func-
tions beyond the classic “make a phone call away from home” scenario, such as
navigation aid, MP3 player, digital camera, web / messaging client and many
more. Very few customers are able to make completely well-informed buying-
decisions in this field without a significant need for consultation. The situation
is made even worse by the frequently changing product domain. Retailers are
forced to permanently release new products to expand their share in a rather
saturated market. Also, the domain itself sees frequent technical innovations,
creating new products and sometimes even new business models (think of, e.g.,
location-based services made possible by the recent integration of GPS receivers
into many mobile phones). Therefore, even once-acquired domain knowledge ages
rapidly, for customers and salespersons alike.

Cellphones differentiate themselves primarily through their technical prop-
erties, whereas customers’ whishes commonly consist of “softer” needs that the
desired phone is supposed to satisfy. Salespersons bridge this discrepancy in a
natural way, translating the customers’ wishes into appropriate technical require-
ments before recommending cellphones based on these requirements.

However, many current online-recommenders for mobile phones, despite be-
ing aimed at end-users, e.g., in web stores, cannot handle this abstraction. Com-
monly, many online applications are merely product configurators that require
their users to specify technical constraints which are then used to restrict the
set of available products accordingly. To bridge the gap between a customer’s
wishes and technically evaluable preferences, an electronic recommender system
must be prepared to accept fuzzy user input and use an internal model to in-
fer the technical criteria. At the same time, the inference mechanism must be
flexible enough to be used in a dynamic dialogue environment, i.e., it cannot
rely on a particular order answers are given in. Some questions may well remain
unanswered throughout the dialogue, and for some questions the customers may
change their opinion at a later point in the dialogue.

3 Eliciting Preferences

Our approach to infer technically useful information from customer answers is
based on a Bayesian network (cf., e.g., chapter 14 in [12]) which is automatically
generated from a metamodel-based description of the targeted market domain.
Bayesian networks can be applied to model causal relationships between obser-
vations and their possible effects based on conditional probabilities. Once having
evidence of (part of) the observations, a Bayes engine can infer the probabilities
of the possible outcomes by probability propagation through the network. In the
work reported on here, we use a Bayesian network to model the relationships of
user needs (observations) and technical properties of products (outcomes).

Fig. 1 shows a UML diagram of a portion of the domain metamodel which
is relevant to the process of eliciting preferences. The Articles in the targetted

33

Using Bayesian Networks To Infer Product Rankings From User Needs 3

-name : String

-questiontext : String

-answeroptions : List<String>

Need

-name : String

Value

-name : String

-weight : Integer

Attribute

1

*
allowed_values4

-positive : Boolean

-weight : Integer

Influence

*

*

«interface»

Influencer

«interface»

Influenceable

1

*

described_by4

-name : String

Article

Fig. 1. UML diagram of the domain metamodel

domain are described by an explicit aggregation of their technical Attributes.
To be able to distinguish the relative importances of Attributes during the rec-
ommendation process, they are assigned a numerical weight (cf. definition 4 for
a detailed explanation). Also, each Attribute explicitly lists its allowed Values,
defining the possible characteristics of the products in the target domain. Rec-
ommendations will then be obtained based on the modeled description of the
technical properties of the target domain. The implied restriction to finite, dis-
crete value ranges for Attributes has proven to be not a significant limitation,
since, for our purpose, the value ranges of typically continuous Attributes (e.g.,
prices or sizes) can easily be classified into discrete ranges.

The dialogue used to obtain information from the customer is specified by
modelling a number of Needs. The Need entity contains properties that are used
to formulate a specific question that can be asked during the course of the
elicitation process, including the possible answer options.

Connecting the answers about Needs with the desired technical product prop-
erties that are required to obtain recommendations is accomplished by modelling
a number of Influences that represent the causal interdependencies between
Needs and other Needs, as well as between Needs and attribute Values. In-
fluences can be positive, i.e., have a strengthening effect, or not, i.e., have an
attenuating effect. The numerical weight of an Influence denotes the “strength”
of the Influence as we will detail further below.

Linking Needs with each other by means of an Influence is based on the
notion that answers to questions regarding one Need may influence answers that
the customer is likely to give when asked questions about other Needs in the
model, as can be observed in example 1. Influences between Needs and Values
model the influence an answer to a question has on the perceived utility of a
product, as we will show in definition 1.

Note that the diagram in Fig. 1 displays a metamodel, which must be in-
stantiated to a domain model with concrete Needs, Attributes, and Influences.
Examples 1, 2, and 3 will illustrate this process for a simplified mobile commu-
nications domain.

34

4 Sven Radde and Burkhard Freitag

Fig. 2. Screenshot of the dialogue in our web application

Example 1 (Needs). Let us consider a simplified example from the mobile com-
munications domain where the metamodel could have been instantiated by spec-
ifying the following exemplary Needs:

Need name Question text
“Will you use your new phone to...

multimedia ...play multimedia content?”
business ...use business functions?”
music ...listen to music?”
internet ...access the internet?”

It is immediately apparent that causal influences exist between some of these
Needs, which can be represented using Influences (cf. Fig. 1), as we show below.

For many questions it turns out in practice that they should be written in
a way so that they can be answered by customers on a Likert scale [9] (i.e.,
on a scale between “strongly agree” and “strongly disagree”). See Fig. 2 for a
screenshot that illustrates how questions are displayed in a web application that
implements the approach described in this paper.

Example 2 (Attributes and Values). A current real-life model instantiation for
the mobile telecommunications domain comprises about 70 technical Attributes
with about 500 possible attribute Values. In this paper, we focus on three exem-
plary attributes and their possible values: Does the cellphone have an integrated
MP3 player, does it have broadband internet connectivity via UMTS, and what
size has its internal memory?

Attribute Allowed values weight
mp3 yes / no 2
umts yes / no 1
memory small / medium / large 1

While mp3 and umts are examples of boolean value ranges, memory illustrates
a discretized value range where the actual amount of memory has been mapped
to discrete values (using, e.g., <1GB / 1-4GB / >4GB as a classification rule).

35

Using Bayesian Networks To Infer Product Rankings From User Needs 5

Table 1. Exemplary Influences

from to type

business internet positive
business Memory small negative
business Memory medium positive
internet umts yes positive
internet umts no negative
multimedia music positive
multimedia Memory medium negative
multimedia Memory large positive
music mp3 yes positive
music mp3 no negative

Example 3 (Influences). Let our sample domain model contain Influences as
shown in table 1 connecting the model elements of examples 1 and 2. For sim-
plicity, assume further that all of them have an equal weight of 1.

Using Influences, arbitrary hierarchies of Needs may be specified, although
a real-life evaluation revealed that the hierarchy remains rather flat in the con-
sidered use case. In fact, there are merely three tiers, i.e., one tier of Needs that
influence other Needs on a middle tier which, in turn, influence the technical
Attributes that form the bottom tier.

From an instance of the domain metamodel, a corresponding Bayesian net-
work can be automatically generated. Needs and attribute Values are repre-
sented as random variables (i.e., nodes of the graph representing the network).
Need -variables have outcomes that correspond to the possible answers of the cor-
responding questions in the elicitations dialogue, so that a customer’s answers
can easily be represented in the Bayes net by introducing evidence for the ap-
propriate outcomes. On the other hand, each Value is represented by a random
variable with the outcomes of “true” and “false” that model the likelihood that
a certain Value fulfills the customer’s Needs. Modelling Values in this way (and
not, e.g., by representing one Attribute as a single variable with all Values as
possible outcomes) is necessary to model the fact that Values may be satisfying
independently of each other.

The Influences form the edges of the Bayesian network. Modeled causal de-
pendencies between source nodes (Influencers) and a target node (Influenceable)
are expressed by the entries in the conditional probability table (CPT) of the tar-
get node. The CPTs are constructed in such a way that, for positive Influences,
if the customer agreed to the question corresponding to the source’s Need, the
likelihood that he/she will also agree to the target Need is increased, weighted
relatively against other Influences by using the specified weight. If the target
node corresponds to a Value, the probability for “true” of that particular Value
is increased (i.e., it is more likely that products with this attribute value will be
acceptable for the customer). Negative Influences have the opposite effects.

36

6 Sven Radde and Burkhard Freitag

Fig. 3. Inference snapshot (modeled with GeNIe – http://dsl.sis.pitt.edu/)

For a detailed description of the overall generation method see [10]. Fig. 3
shows the Bayes net for the domain model as introduced in examples 1, 2, and
3. The main purpose of the Bayesian network is to derive utility estimations for
attribute Values from which preferences will be derived. To this end, the notion
of utility introduced below is based on the assumption that Values which are
more likely to satisfy the customer’s needs are also more useful (i.e., should have
a greater utility).

Definition 1 (Utility of a Value). We define the utility uav of an attribute
Value av as the posteriori-probability of the outcome “true” of the random vari-
able rav in the Bayesian network that corresponds to av:

uav := p(rav = true | . . .)

It immediately follows that all utility values are normalized between 0 and 1.
Also, the advantage of representing attribute Values as separate booleans becomes
apparent: It is reasonable that more than one Value for an Attribute can get a
utility of 1.0 (i.e., is useful with 100% probability). This situation can be taken
into account in a Bayes net as described above.

Example 4 (Utility). Consider an (early) point in the preference elicitation dia-
logue where the customer has given the answer “I strongly agree.” to the question
for the Need business. The answer is entered as evidence into the Bayesian net-
work, leading to the posteriori probability-distributions shown in Fig. 3. Eval-
uating the Influences as described above, the elicitation algorithm infers that
the customer will need to access the internet using the cellphone which makes
UMTS connectivity a necessity, i.e., we have uumts yes = 1.0 and uumts no = 0.0

On the other hand, needing business functionality does not allow any con-
clusions towards multimedia support, which leads to ambivalent utilities for an
MP3 player:

ump3 yes = ump3 no = 0.5

As for the memory capacity, the system reasons that a too small capacity is
inacceptable in a business context, while a medium capacity is probably sufficient
(depending on whether additional storage is required for multimedia content).

37

Using Bayesian Networks To Infer Product Rankings From User Needs 7

As we have seen, the primary goal of the inference engine in our context is
to infer technical values from user needs according to the influence relations and
given conditional probabilities. However, it can also process direct user input to
allow for short-cuts by simply inserting a submitted value as evidence for the
node of the Bayesian network that corresponds to the appropriate Value-entity.
Thus, the preference elicitation dialogue is inherently adaptable to different levels
of customer expertise. Further uses of the described inference approach, e.g., to
control the dialogue flow by estimating the importance of unanswered Needs and
to predict a customer’s answers are presented in a broader context in [11].

4 Using Preferences

As shown above, the Bayesian network provides us with estimations about the
utility of every possible attribute value in the product domain. To use these
estimations to elicit preferences, we also need a notion of the relative importance
of the attributes relative to each other. In our approach, the importance of an
attribute depends on three factors:

(1) Those attributes customers show significant interest in should be regarded
as more important than others. In our model, “significant interest” is derived
from the fact that more distinctive predictions for the attribute values exist.

(2) The dialogue situation has influence on the importance of an attribute
for the elicitation process. Attributes that are not connected to any already
answered question, should not have any influence at all.

(3) A domain expert may assign a static numerical weight to each attribute
(cf. Fig. 1). Marketing research shows that some attributes are inherently more
important than others in a buying decision. Experiments indicate that it is
sufficient to classify attributes into a small number of weight “classes”, which is
considered to be rather simple for suitably knowledgeable experts.

Definition 2 (Distinctiveness of an Attribute). The Distinctiveness da of
Attribute a is defined as the average of the distances of the utilities of all possible
attribute values of a from the “indifferent” utility of 0.5, normalized to [0..1]:

da := 2 ∗
∑

v∈dom(a)(|uv − 0.5|)
|dom(a)|

Example 5 (Distinctiveness). To calculate the distinctiveness dmemory of the at-
tribute “memory”, assume that the following utilities have been inferred (cf. Fig.
3):

umemory small = 0.0
umemory medium = 0.75
umemory large = 0.5

dmemory = 2 ∗ |0.0−0.5|+|0.75−0.5|+|0.5−0.5|
3 = 0.5

The result fits our intuition: We are not yet sure about the customer’s opinion
regarding memory size at this point of the dialogue. Therefore, values derived
for this attribute should not be taken too seriously.

38

8 Sven Radde and Burkhard Freitag

Definition 3 (Situation Factor of an Attribute). Let Qanswered be the set
of all questions already answered in the current dialogue. For an Attribute a
let P(a) denote the set of all Influence-ancestors of a, i.e., the Needs connected
directly or transitively with a Value of a via an Influence-path in the network.
The Situation factor sa of a is defined as follows:

sa :=
{

0 if ∀q ∈ Qanswered : q /∈ P(a)
1 otherwise

Definition 4 (Importance of an Attribute). Let a be an Attribute and wa

be the weight of a as specified in the particular model under consideration. Let
da be the distinctiveness of a according to definition 2 and sa be the situation
factor of a (definition 3). The Importance ia of a is defined as

ia := da ∗ sa ∗ wa

Example 6 (Importance). Extending example 5, we determine imemory based on
the following parameters:

dmemory = 0.5 (example 5)
smemory = 1.0 (memory is connected to the answered question, Fig . 3)
wmemory = 2.0 (taken from the domainmodel)

imemory = 0.5 ∗ 1.0 ∗ 2.0 = 1.0

Note that distinctiveness and situation factor depend on the preferences
learned during the course of the elicitation dialogue. Therefore, they are up-
dated after each dialogue step to account for newly acquired knowledge.

The approach to preference elicitation described here is based on Multi-
Attribute Utility-Theory (MAUT – cf., e.g., [13]) which is used to combine the
utility estimations of the various technical attributes into one global ordering
of the whole product catalogue. To achieve this, we formulate a utility function
for products which essentially computes a weighted sum over the utilities of all
technical attributes.

The utility function can be formulated as a standard SQL query. For the
sake of simplicity, we assume that all relevant data for an article is available
in a single table with one column for each technical attribute (cf. Fig. 1) and
an additional column containing the product’s name. Every tuple in this table
represents one concrete product (e.g., in the sample domain, one concrete cell-
phone). The following SELECT query computes a numerical UTILITY value for
each tuple and orders the answer set accordingly:

SELECT *, ($utilityfunction) AS UTILITY

FROM cellphones

ORDER BY UTILITY DESC

$utilityfunction calculates the overall utility of a given cellphone by sum-
ming up the utility of each attribute value uvalue (cf. definition 1), weighted by
that attribute’s importance iattribute (cf. definition 4). To this end, our imple-
mentation uses a set of CASE-WHEN clauses for each attribute.

39

Using Bayesian Networks To Infer Product Rankings From User Needs 9

Table 2. Exemplary Product Catalogue

Name mp3 memory umts

MobileA yes medium no
MobileB yes large no
MobileC no medium yes
MobileD no small no

Example 7 (Preference Order by MAUT). Assume that the current product cat-
alogue contains the entries as shown in table 2. The utility and distinctiveness
values are derived from the dialogue situation shown in Fig. 3:

uumts yes = 1.0
uumts no = 0.0 dumts = 1.0
umemory small = 0.0
umemory medium = 0.75
umemory large = 0.5 dmemory = 0.5
ump3 yes = 0.5
ump3 no = 0.5 dmp3 = 0.0

For simplicity, assume situation factors of 1.0 for all attributes. For this
constellation, the following ranking of catalogue entries according to the utility
values computed as shown above results:

1) MobileC (Utility: 1.375)
2) MobileA (Utility: 0.375)
3) MobileB (Utility: 0.25)
4) MobileD (Utility: 0.0)

Since UMTS capability is the most important feature for our sample business
customer, it is decisive in producing the utility-based rank (“MobileC” is the only
UMTS-capable device in table 2). In contrast, support for MP3 does not play a
role since the course of the dialogue did not yet allow any conclusions about the
customer’s wishes in this respect.

The structure of the query is known at the time of domain model design.
Therefore, the query can be implemented as a stored procedure that can be
called with the current importances and utility values as parameters. In our
experiments, the actual query execution times were only a few millliseconds.
It should be noted, however, that there are less than 1,000 different cellphones
on the market today, leading to a rather small product catalogue and thus a
small domain size. It is worth noting that, in general, the calculated utility for a
product does not have an absolute meaning (i.e., a statement about how useful
the product is, cannot be made). The value can only be interpreted in a relative
way, i.e., a higher utility means greater usefulness and hence a higher rank.

The method described so far can also be used to provide the necessary inputs
for more general approaches to rank query answers using boolean predicates,
such as the one presented in [2]. To take full advantage of the more elaborate
possibilites offered there, it would be necessary to extend our product modelling

40

10 Sven Radde and Burkhard Freitag

by ways to express the potentially hierarchical structure of complex boolean
conditions. Also, preferences for approaches based on pareto-optimality such as
PreferenceSQL [7, 8] can be derived using a Bayesian network as described in
this paper. In effect, the Bayesian network provides an ordering for all values of
a technical attribute by interpreting the calculated utility values as the pareto-
preferences serving as an input for PreferenceSQL.

PreferenceSQL supports “LAYERED” preferences (cf. [7]) for situations where
a domain dom(A) of an attribute can be partitioned into subsets that are ordered
according to a “better than” relation. In our approach, all attribute values that
have the same utility are grouped together in the same “layer”, leading to a
straight-forward application of the LAYERED preference constructor. Clustering
techniques may be used to limit the number of subsets that are to be considered
by interpreting some values as equally preferred, despite minimal differences in
their numerial utility values.

Since the semantics of our approach relies on the notion that the customer is
generally indifferent about attribute values with the same utility (i.e., all values
with the same value are mutually substitutable), we annotate each LAYERED
preference with the additional “regular” keyword (cf. section 4 in [7]). These
preferences are combined using the pareto “AND” operator to form the complete
PreferenceSQL query.

Example 8 (PreferenceSQL). We re-use the dialogue situation of example 7 to
formulate a query in PreferenceSQL. Using the pattern described above leads to
the following statement:

SELECT * FROM cellphones PREFERRING

umts LAYERED ((’yes’), (’no’), others) regular AND

memory LAYERED ((’medium’), (’large’), (’small’), others) regular AND

mp3 LAYERED ((’yes’, ’no’), others) regular

Executing this statement against the product catalogue of table 2 yields
“MobileC ” as the query result, which is the pareto-optimal tuple of the relation
and therefore the only result according to the “Best-Matches-Only” semantics
of PreferenceSQL. Successively re-executing the query with added WHERE-clauses
to exclude the already-retrieved tuples yields the following results which are
ordered exactly as those obtained using our MAUT-approach in example 7 (NB:
in general, the orderings defined by both approaches are not equivalent):

1) MobileC
2) MobileA (WHERE name <> ’MobileC’)
3) MobileB (AND name <> ’MobileA’)
4) MobileD (AND name <> ’MobileB’)

Generated in this straight-forward way, the PreferenceSQL query would con-
sist of a very large number of pareto-preferences. To reduce the number of prefer-
ences, the importance of an attribute (cf. definition 4) may be exploited to limit
the preferences to a fixed number or to consider only preferences for attributes
having an inportance that exceeds a certain threshold.

41

Using Bayesian Networks To Infer Product Rankings From User Needs 11

5 Related Work

The knowledge-based elicitation approach described here is notably different
from collaborative filtering methods (cf., e.g., [4, 6]) since it does not require item
ratings. Assuming that a user will not interact with the system very frequently,
we cannot rely on buying histories to build our model of the user. While eliciting
explicit ratings may be acceptable in an online context, it seems not to be an
adequate form of interaction between salespersons and customers. Hence, our
user-model builds on preferences that can be elicited during the course of a
natural sales dialogue.

Ardissono et al. [1] present a personalized recommender system for config-
urable products. Their approach involves preference elicitation techniques that
employ reasoning about customer profiles to tailor the dialogue to a particular
customer by providing explanations and smartly chosen default values wherever
possible. The customer preferences learned this way are then used as constraints
in the configuration problem at hand to generate the recommended product
configuration, which might result in empty recommendations (i.e., the specified
constraints are not satisfyable), requiring repair actions. Our approach does not
directly exploit the elicited preferences as constraints but rather uses them as
an input to ranking database queries which return a list of products ordered
according to the customer’s preferences.

In [3], the dialogue-oriented recommender suite CWAdvisor is presented.
Their knowledge-base is similar to ours but it includes an explicit representa-
tion of the “recommender process definition”, i.e. all possible dialogue paths in
a tree-like structure. While obviously able to specify a fine-grained dialogue, the
achievable level of detail is limited by the complexity of the dialogue specifica-
tion. Our approach generates the (equally complex) dialogue specification from a
much more compact model and is more flexible by incorporating mixed-initiative
selection of questions, easy belief revision and adaptive personalization.

An approach similar to ours is presented in [5]. However, the utility estima-
tions (the “value tree”) of Jameson et al. do not seem to be built on an explicit
model of the currently served customer but rather on the assumed properties
of an average user of their system. Hence, the derived preferences are not per-
sonalized as strongly as in our approach. Also, as the value tree is a strictly
hierarchical structure, it cannot capture the fact that a technical attribute may
be influenced by more than one single need.

6 Conclusion

We presented an approach to inferring utility estimations usable for preference-
based or ranking-based database queries, which is accomplished by using a
Bayesian network that can be generated from a domain model. The approach
described in this paper has been implemented in a joint project together with an
industry partner. Their business experts designed a domain model comprising
about 25 needs and more than 100 technical attributes. The model is considered

42

12 Sven Radde and Burkhard Freitag

to adequately represent the marketing-relevant aspects of the mobile commu-
nications domain from the industry point of view. Although the effort for this
first real-life instantiation of the model was significant, the task was regarded
as feasible and the routine model maintenance has turned out to be inexpensive
under operational conditions. Evaluations of the overall recommendation con-
cept by marketing research experts have shown convincing results concerning
the adequacy of the model and the acceptance of the overall approach.

Our current work focuses on conducting a thorough field evaluation of the
system with a larger number of volunteers to obtain more statistical evidence
about the quality of the derived preferences and related product rankings. An-
other field of ongoing research is the design of an explanation component which
is able to explain the reasoning that led to the generated recommendations and
to exploit user feedback about the recommendations to automatically adjust
some parts of the domain model.

References

1. Ardissono, L., Felfernig, A., Friedrich, G., Goy, A., Jannach, D., Petrone, G., Schae-
fer, R., Zanker, M.: A Framework for the Development of personalized, distributed
Web-Based Configuration Systems. AI Magazine 24, 93–110 (2003)

2. Beck, M., Freitag, B.: Weighted Boolean Conditions for Ranking. In: Proc. of the
ICDE-08 Workshop on Ranking in Databases (DBRank’08) (2008)

3. Felfernig, A., Friedrich, G., Jannach, D., Zanker, M.: An Integrated environment
for the Development of Knowledge-Based Recommender Applications. Intl. Journal
of Electronic Commerce 11(2), 11–34 (2006)

4. Herlocker, J., Konstan, J., Terveen, L., Riedl, J.: Evaluating Collaborative Filtering
Recommender Systems. ACM Transactions on Information Systems (TOIS) 22(1),
5–53 (2004)

5. Jameson, A., Schaefer, R., Simons, J., Weis, T.: Adaptive Provision of Evaluation-
Oriented Information: Tasks and Techniques. In: Proc. of the 14th International
Joint Conference on Artificial Intelligence (IJCAI) (1995)

6. Jin, R., Si, L., Zhang, C.: A Study of Mixture Models for Collaborative Filtering.
Information Retrieval 9(3), 357–382 (2006)

7. Kießling, W.: Preference Queries with SV-Semantics. In: Proc. of the 11th Inter-
national Conference on Management of Data (COMMAD). pp. 15–26. Computer
Society of India (2005)

8. Kießling, W., Köstler, G.: Preference SQL – Design, Implementation, Experiences.
In: Proc. of the 28th Intl. Conference on Very Large Data Bases (VLDB) (2002)

9. Likert, R.: A Technique for the Measurement of Attitudes. Archives of Psychology
22(140), 55ff (1932)

10. Radde, S., Kaiser, A., Freitag, B.: A Model-Based Customer Inference Engine. In:
Proc. of the ECAI-08 Workshop on Recommender Systems (2008)

11. Radde, S., Zach, B., Freitag, B.: Designing a Metamodel-Based Recommender Sys-
tem. In: Proc. of the 10th International Conference on Electronic Commerce and
the Web (EC-WEB) (2009)

12. Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall
International Editions (1995)

13. Schaefer, R.: Rules for Using Multi-Attribute Utility Theory for Estimating a
User’s Interests. In: Workshop on Adaptivity and User Modelling (2001)

43

Contact Recommendations from Aggegrated

On-Line Activity

Abigail Gertner, Justin Richer, and Thomas Bartee

The MITRE Corporation
202 Burlington Road, Bedford, MA 01730

{gertner,jricher,tbartee}@mitre.org

Abstract. We describe a system for recommending people to contact
based on similar interests and activities as part of a company-wide social
networking site. Our contact recommendation service aggregates input
from multiple on-line data sources and combines them using a Bayesian
noisy-MAX function to generate a rating of the overall match between
two users. The system is running as part of an experimental social net-
working site at MITRE. We present the results of a preliminary evalua-
tion in which we compare the recommendations to existing friend rela-
tionships.

1 Introduction

The use of social networking platforms in Enterprise settings, including industry
and government, is growing rapidly. One of the primary stated uses for these tools
is to help workers connect with each other within their organizations. This is
particularly attractive in the case of large corporations and government agencies
whose organizational structure as well as geographic separation can make it very
difficult to know who you should be talking to.

Modeled on the popular internet social networking sites, such as Facebook
and LinkedIn, Enterprise social networking tools generally include contact lists,
allowing users to connect with the people they know. These tools often also
include a suite of social utilities such as blogs, wikis, bookmarks, tags and file
sharing. By connecting with people via the contact list, a user can then keep
track of their contacts’ activities on the site, providing a social filter on the
available information.

Social networking sites become more useful and more attractive the more
connections their users make with each other. Contact recommendation is a
feature that is intended to make it easier for users of a social network to create
their online network. Facebook and LinkedIn both provide suggestions of people
to connect to, primarily based on existing network connections in order to help
users find people they know to connect to on the site.

In this paper we present a contact recommendation tool that is designed to
help workers in a large distributed enterprise environment make connections with
others who share similar interests or work activities. We generate contact recom-
mendations by aggregating information about users from diverse data sources

44

2 Abigail Gertner, Justin Richer, and Thomas Bartee

within the company. The contact recommendations are implemented as a stand-
alone web-service which is designed to be integrated with a social networking
user interface. We show how the recommendations appear in our company’s in-
ternal social networking tool and then discuss two preliminary evaluations of the
recommendations.

2 Related Work

The literature on recommender systems has primarily focused on recommend-
ing items to users. Much of this work is based on collaborative filtering [1] –
a technique that clusters people according to their item preferences and then
recommends items that other similar users have liked.

There are several research projects that have looked at recommending peo-
ple to each other. ReferralWeb [2] had the goal of finding existing chains of
relationships between people by mining on-line documents such as co-authored
papers and organizational charts. The Do You Know? system from IBM [4] also
attempts to find people who are already known to the user in order to suggest
that they be added to their social network. Do You Know? is implemented using
SONAR [5], a social network aggregation tool that is probably the most similar
to our own contact recommendation tool, in that it brings together evidence from
multiple data sources to form its recommendations. The primary differences are
the way we do the aggregation, and the fact that the IBM tool is attempting
to identify existing social relationships, while we are primarily concerned with
recommending people who are not known but possibly should be.

Terveen and McDonald [3] coined the term “social matching” to refer to
systems that try to recommend and connect people each other. They outline the
problem space in a series of claims, such as the need for explicit user models and
the application to on-line social networks.

Another related area of research is the field of expertise finding [6]. This
typically involves keyword searches for an expert who can answer a question
or help solve a problem. In contrast, our contact recommender is looking for
people who may be appropriate to form a longer term connection with based on
common interests, not necessarily based on their expertise on a single topic.

3 Contact Recommendation Implementation

Our contact recommendation service is implemented as part of MITREverse,
an experimental social networking system that is deployed inside the MITRE
firewall. MITREverse is built on the Elgg open source social networking plat-
form [7], which includes the basic social network features of friend lists, activity
streams and message boards, as well as providing additional social tools such as
groups, blogs, bookmarks and file sharing. MITREverse was deployed as part of
a research project two years ago and has about 400 members in spite of never
having been officially publicized or advertised within the company. Figure 1
shows a screenshot of a profile page on MITREverse.

45

Contact Recommendations from Aggegrated On-Line Activity 3

Fig. 1. A profile page on MITREverse

The original insight behind the MITREverse contact recommendation service
was that by bringing together information about people from multiple places on
the network, we could form a more accurate picture of what their interests are
and what activities they are engaging in. As with many large companies, over
the past five years or so MITRE has been making a number of social media tools
available to its employees on our intranet. These include blogs, wikis, email lists,
microblogging and social bookmarking tools. Some of these tools are official cor-
porate supported offerings, and others are grassroots efforts started by individual
employees. Many of these tools have built-in APIs that allow other programs to
easily access and re-use their data. By aggregating the data from these different
services together, the contact recommender creates a multi-dimensional view of
what users have in common with each other.

Currently MITREverse uses seven data sources to compute the similarity
scores: use of the same tags in onomi, our social bookmarking site, shared book-
marks in onomi, shared membership in internal email lists, co-editing of pages
on our corporate-wide wiki, membership in groups on MITREverse, friend of a
friend relationships, and use of the same tags on MITREverse. All of the data
sources we use currently are inside the MITRE firewall and are accessed via
public (to all MITRE users) APIs. We chose to avoid any privacy concerns by
basing our recommendations only on data that would be accessible to anyone
looking at the recommendations.

The contact recommender works by first generating a similarity score be-
tween each pair of users for each data source being considered. Since each data
source may have a different type of user data, the data sources may use dif-
ferent algorithms for computing the similarity score. For instance, in the case
of social bookmarking tags and MITREverse tags we use the cosine similarity
of tag frequency vectors to compare two users’ collections of tags. In the case
of data sources in which there is a simple binary association between users and
items, such as mailing list memberships, we use the Jaccard similarity coefficient
(the size of the intersection divided by the size of the union) as the measure of

46

4 Abigail Gertner, Justin Richer, and Thomas Bartee

similarity between two users. If there is not enough information about a user for
one of the data sources, no scores will be computed for that data source for user
pairs involving that user.

After the similarity scores are generated for the individual data sources, an
overall score is generated for the match between each pair of users based on the
combination of those scores. The overall match is represented as a rating from
zero to five, which is displayed on the user interface as a set of zero to five stars,
as shown in Figure 2. The icons beneath the stars represent the data sources that
were used to generate the recommendation, and clicking on the recommendation
will take the user to a detailed explanation page for the recommendation.

Fig. 2. The display of a single recommendation

There are several possibile approaches to combining the individual data
source scores into an aggregated rating. The most straightforward solution is
to use the average score of the data sources, possibly weighted according to
which data sources are considered more important. This is the approach taken
by the Do You Know? system [4]. However, there are often cases where there is
a strong match between two users on one or two of the data sources and a weak
match on the rest. Using an average over all data sources would cause the overall
score in these cases to be low, whereas we believed that people with a strong
match in even one area would be likely to benefit from knowing each other.
Therefore we decided to use a model that works more like an OR relationship –
if any of the data sources scores is high, the resulting aggregated score will be
high.

The model we are using is a causal probabalistic model called the Noisy-MAX
[8], which is used in Bayesian networks to model a multi-valued variable whose
value depends on the maximum value of its causal influences. Figure 3 shows
a graphical representation of the Noisy-MAX model for aggregating similarity
scores. The definition of the Noisy-MAX says that the inferred value of the
node representing the outcome variable (in this case, the strength of the match
in question, from zero to five) is determined by the maximum value produced
independently by that node’s inputs. The “noise” built into the probabilistic
relationship means that the more inputs there are with a high similarity score,
the more likely the overall similarity is to have a high value.

The Noisy-MAX takes advantage of the fact that the causal influences on
the effect node are considered to be independent of each other. In this case,
the causal influences are the individual data sources and the effect is the aggre-
gated rating. Using this independence assumption, it is possible to define the
relationship between the causes and the effect with much fewer parameters than

47

Contact Recommendations from Aggegrated On-Line Activity 5

aggregated

rating

data source

scores

MAX

data source

effects

Fig. 3. The Noisy-MAX model for aggregating scores

a full conditional probability table. For each link from a data source to the com-
bined rating, the parameters needed specify the probability that the combined
rating will be equal to each possible value (0-5 stars), given the value of the
data source and assuming that all other data sources are absent. Currently the
parameters for the noisy-MAX are estimated subjectively but we are working to
derive values from actual user judgments of matches between users.

We expect that it is the case that some data sources are more influential
than others in determining a good match between users. Furthermore, each user
may prioritize the various data sources differently. Therefore it is important to
be able to weight the inputs in order to adjust their effect on the aggregated
rating, as was done in [4] with the weighted average of the input scores. We have
modified our implementation of the Noisy-MAX to include a weight parameter
for each input data source, so that the influence of the individual data sources
on the aggregated score can be adjusted according to the corresponding weights.
Since different users may have different priorities for the data sources, we plan to
allow them to adjust these weights via the user interface, although this feature
is not yet implemented.

The contact recommender runs nightly to update its recommendations. With
396 users on MITREverse, the update takes about twelve minutes. However much
of this time is spent downloading the full user data from the external (outside
of MITREverse) data sources and so that time will not increase as MITREverse
gains additional users.1 The noisy-MAX computation to combine the data source
scores currently takes about 1 minute and forty seconds. Extrapolating that value
to apply it to all possible pairs of MITRE’s approximately 7000 employees,
the update would take 8.35 hours, so it will still be possible to update the
recommendations once a day.

1 Several of the web services we connect to include API calls that allow us to retrieve
all user data in a single call. We do this even though many of the users are not
current MITREverse users because we include non-MITREverse users in our recom-
mendations in order to encourage current users to invite their recommended contacts
onto the site.

48

6 Abigail Gertner, Justin Richer, and Thomas Bartee

4 Evaluation

As a preliminary evaluation of the accuracy of the contact recommendation rat-
ings we have looked at the correspondence between the ratings and the actual
friend relationships that currently exist in MITREverse. We hypothesized that
for pairs of users who are connected to each other in the social network, the
recommendation rating should be higher than for pairs of people who are not
connected. This is not a perfect measure because, first, there may be people who
know each other who have not yet connected on the site and, second, people
may have friends on the site who they don’t have much in common with. How-
ever, both of these disadvantages actually make it less likely that a difference
would be detected. If we can see a difference in the ratings between the friend
pairs and the non-friend pairs, it would give us an initial confirmation that our
recommendations are doing the right thing.

There are 396 total user accounts on the MITREverse site, making 156,420
possible friend relationships (friend relationships in MITREverse are unidirec-
tional, so a relationship of person A to person B is treated separately from a rela-
tionship of person B to person A). Out of these possible friend relationships there
are 1,752 actual friend relationships in the site. The contact recommender found
enough information in at least one data source to generate recommendations
for 29,609 of the possible friend relationships. 1316 of these recommendations
were for pairs of users who are already connected as friends, and the remaining
28293 are for pairs who are not yet connected. Table 1 summarizes the number
of recommendations generated for existing friend and non-friend pairs.

Table 1. Total number of recommendations generated for friend and non-friend pairs

Friends Not Friends

Recommendation 1316 28293

No Recommendation 436 126374

We then compared the recommendations that were generated for the friend
pairs with the recommendations that were generated for the non-friend pairs.
The mean recommendation rating (taken from the 1-5 star ratings) for the friend
relationships is 1.94, while the mean for the non-friends is 1.38. While this is a
small difference, it is encouraging given our caveats about the friend relationships
not being a completely reliable correlate of match strength. Figure 4 shows
the percentage of the friend and non-friend pairs that were given each of the
five possible ratings by the contact recommender. The non-friend pairs are 1.7
times as likely to be given a rating of one star as compared to the friend pairs.
Conversely, the friend pairs are 5.15 times as likely to get a four star rating and
3.73 times as likely to get a five star rating.

To evaluate the use of the noisy-MAX function for combining the data source
inputs, we generated recommendations using an alternative method of simply

49

Contact Recommendations from Aggegrated On-Line Activity 7

Fig. 4. Percentage of friend and non-friend user pairs assigned each rating, from one
to five stars, using the noisy-MAX function

taking the average of the input scores, which is the approach taken in SONAR
[5]. Figure 5 shows the percentage of pairs associated with one to five star ratings
using this method. In this case, since we are not using the max function, both
the friend and non-friend pairs are more likely to be given a rating of one star,
and there are very few four or five star ratings, even for the friend relationships.
Based on these results, it appears that the Noisy-MAX model does a better job
of assigning a high rating to people who are actually friends than the straight
average does.

Fig. 5. Percentage of friend and non-friend user pairs assigned each rating, from one
to five stars, using the average of data source inputs

50

8 Abigail Gertner, Justin Richer, and Thomas Bartee

4.1 Human Evaluation

An additional evaluation of the contact recommendations is underway, in which
we are asking people to judge the similarity of pairs of people based on the same
types of inputs that the recommender uses, to get a better understanding of
what algorithms people use to make those decisions. This will help us to evaluate
the use of the Noisy-MAX model as well as to determine the optimal parameter
values. Initial results indicate that many people do consider the maximum of the
individual data source inputs to be important in determining the final rating.

In this study we are also asking subjects to weight the individual data sources
according to their importance to the overall recommendation. Eight out of the
ten subjects so far have said that they consider the differences between data
sources to be important or very important when computing the overall rating,
but their ordered rankings of the data sources are all very different from each
other. This supports our belief that it will be important to allow users to adjust
the data source weights themselves to deliver optimal recommendations.

5 Discussion and Future Work

We have described a contact recommendation tool that looks at data available
about users based on their on-line activities and uses that information to gener-
ate recommendations for other people with similar interests. This capability will
soon be deployed company wide on a new social networking site called Hand-
shake.

Our initial evaluation of the contact recommendations based on existing
friend relationships shows that the ratings are at least able to distinguish be-
tween people who are connected to each other in the social network and those
who aren’t. It also suggests that the noisy-MAX model provides an advantage
over taking the average of the inputs because it leads to higher ratings in general,
especially for the existing friend pairs. However, as we noted earlier, we are pri-
marily interested in the ability of the recommender to identify relevant contacts
that are not already known to the user. Therefore we are planning a followup
evaluation in which we will ask users to judge the actual recommendations that
the system generates for them personally. In that case, we will be able to see
whether the system is able to recommend novel connections that users would be
likely to follow up on.

References

1. Herlocker, J. L., Konstan, J. A., Borchers, A., Riedl, J.: An Algorithmic Framework
for Performing Collaborative Filtering. In: Proceedings of Research and Develop-
ment in Information Retrieval, ACM, New York (1999)

2. Kautz, H., Selman, B., Shah, M.: Referral Web: combining social networks and
collaborative filtering, Communications of the ACM 40(3), pp 63–65 (1997)

51

Contact Recommendations from Aggegrated On-Line Activity 9

3. Terveen, L. and McDonald, D. W.: Social Matching: A Framework and Research
Agenda. ACM Transactions on Computer-Human Interaction, 12(3), pp. 401–434,
(2007)

4. Guy, I., Ronen, I., Wilcox, E.: Do You Know? Recommending People to Invite
into Your Social Network, In: Proceedings of the 13th international conference on
Intelligent user interfaces, pp. 77–86. ACM, New York (2009)

5. Guy, I., Jacovi, M., Shahar, E., Meshulam, N., Soroka, V., Farrell, S.: Harvesting
with SONAR: the value of aggregating social network information. In: Proceed-
ings of the twenty-sixth annual SIGCHI conference on human factors in computing
systems (CHI ’08), pp. 1017–1026. ACM, New York (2008)

6. Maybury, M., D’Amore, R., House, D.: Automating Expert Finding. International
Journal of Technology Research Management. 43(6): 12-15 (2000)

7. Elgg open source social networking platform, http://www.elgg.org/
8. Dı́ez, F., Druzdzel, M.: Canonical probabilistic models for knowledge engineering,

Technical Report CISIAD-06-01. UNED, Madrid, (2006)

52

Reciprocal Recommenders

Luiz Pizzato, Tomek Rej, Thomas Chung,
Kalina Yacef, Irena Koprinska, and Judy Kay

School of Information Technologies
University of Sydney, NSW 2006, Australia

{forename.surname}@sydney.edu.au

Abstract. This paper introduces Reciprocal Recommenders, an impor-
tant class of personalised recommender systems that has received little
attention until now. The applications of Reciprocal Recommenders in-
clude online systems that help users to �nd a job, a mentor, a business
partner or even a date. The contributions of this paper are the de�nition
of this class of recommendation system, the identi�cation of the particu-
lar personalisation challenges for them, the proposition of some promising
techniques to address these challenges. We illustrate these concepts with
a case study in online dating.

1 Introduction

There has been considerable research on recommenders and many deployed
systems, in domains such as books (Amazon.com), pharmacy products (Drug-
store.com), online auctions and seller reputation modelling (eBay) [11]. The dom-
inant model for such recommenders is to provide a user with recommendations
of items likely to be of interest to the user.

In social matching, where people are recommended to each other, the qual-
ity of a match is determined by all parties involved in the match. A match is
successful only if everyone's preferences are satis�ed. In terms of recommender
systems, this motivates the concept of the reciprocal recommender, where the
user and the item both have preferences that are considered when making a rec-
ommendation. This is in contrast with traditional recommenders which consider
only the preferences of the user.

The traditional recommendation process is based on four important classes
of models:

1. explicit user models or pro�le information about the user, such as their
personal attributes like age, gender and educational level;

2. explicit models of the items, such as genre, director and actors for a movie
recommender;

3. explicit user models of preferences in the domain, such as movie preferences
in a movie recommender;

4. implicit user models based on their actions, for example purchases and time
spent gaining more information about particular items.

53

Table 1. Di�erence between traditional recommenders and reciprocal recommenders

Traditional recommender Reciprocal recommender

User receives recommendations and is sole de-
cider about their use/purchase.

User is aware that success depends on the
agreement of the other party involved.

Items are typically abundant, and even if not,
there is no need to limit the number of users
recommended an item.

Items have very limited availability. Items are
represented by other users, or, as in online
dating, items are other users.

A successful transaction is de�ned by the user
who was given the recommendation.

A successful transaction is de�ned by both
the user given the recommendations and the
recommendation item itself.

Users and products might constantly re-occur
in the system, making easier to track prefer-
ences.

Users and products might only occur once,
and might never appear again after a suc-
cessful transaction. Therefore, the cold-start
problem is signi�cant in this domain.

Notably, in this large body of recommender research work, there is some
symmetry between the explicit models of the users and the items (classes 1 and
2 above). However, there is no such symmetry for the explicit model of the user's
preferences (Class 3) and the implicit model of preferences (Class 4).

In this paper, we will use the term item to refer to object being recommended,
even when both the user and the item models may represent people. This allows
us to compare the reciprocal recommender with conventional recommenders. For
reciprocal recommender systems, we can make use of additional models:

5. explicit models of the item's preferences in the domain;
6. implicit models of the items based upon their activity.

Many domains will bene�t from a reciprocal recommender. Consider the
work�ow of the expert recommender system in [10] where expert-seekers contact
experts after receiving recommendations. The experts are passive in this system,
and may only choose to reject a seeker after being contacted. It is clearly desirable
to reduce the number of rejections from experts, as it costs time and e�ort for
the seeker to browse for and contact experts. A reciprocal recommender would
help by not only �nding the right expert for the job, but also an expert who
is likely to accept the job. In contrast, improving the immediate satisfaction of
the users by providing them with people they like, might not re�ect the �nal
satisfaction of the user if these relationships are not mutual.

The reciprocal recommender is also useful in areas apart from expert recom-
mendation. A job recommender needs to match the quali�cation of a candidate
to the requirements of a position, but should also consider the likelihood of a
candidate accepting a job [6]. A student/tutor recommendation needs to con-
sider both the student and tutor's needs, skills and previous experiences [14]. For
an online dating website, successful recommendations require that both users be
interested in one another. Table 1 highlights some other di�erences between
traditional and reciprocal recommenders.

Because reciprocal recommenders rely on a two-sided expression of interest
between two di�erent types of users, it presents some issues raised by Terveen
and McDonald [13], such as privacy, trust, relation and interpersonal attraction.
However, the authors have de�ned a research agenda centred on the computer

54

human interaction issues for social matching, which may or may not not have a
reciprocal facet. In this paper, we de�ne the reciprocal recommendation which,
although mostly consisting of interactions between people, does not necessarily
imply social matching.

In Section 3, we present a de�nition of reciprocal recommendation which
can be used to guide future research in the area. Section 2 presents a review
of existing systems and techniques that are used in the areas that require re-
ciprocal recommenders. Although a considerable amount of work has been done
in related areas, reciprocal recommenders are still much underdeveloped. Sec-
tion 4 highlights some approaches that can be taken to address the problem of
recommendation in these domains. In Section 5 we present a case study using
online dating as one domain that requires this type of recommendation. Section 6
presents the concluding remarks.

2 Related work

The �eld of recommender systems is well established, with a large volume of
literature describing di�erent techniques to predict those items that are appeal-
ing to the users. A common criteria used to distinguish between recommenders
is the technique used to generate the recommendations itself (i.e. content-based
techniques, collaborative-�ltering, or hybrid techniques). Although much work
has been done in the areas of recommender system that could bene�t from re-
ciprocation, very few highlight the need for reciprocity.

The work of Malinowski et al. [6] builds two recommender systems for an
employment website: one recommender that �nds the best jobs for a person
seeking a job, and one recommender that suggests the best people for a certain
job. Malinowski et al. point out that it is important to combine both approaches
to match the interests of both job seekers and employers. The authors describe
di�erent ways of integrating both recommenders, highlighting the fact that a one-
to-one (job-seeker to job) Pareto-optimal solution would be desired.1 Addressing
the computational cost of working with a large dataset, the authors also proposes
a quicker solution that takes into account a single stakeholder for which the
recommendations are maximized..

Another work that shows some level of reciprocity is described by Vassileva
et al. [14] in the mentoring systems iHelp. iHelp uses a multi-agent architecture
to facilitate the search for mentors by students. In iHelp, agents have a model
of the knowledge of each user and when students ask for assistance, they are
capable of �nding other users who are willing to help and whose knowledge is
comprehensive in the required topic of learning. The reciprocity of iHelp comes
from the fact that the user model of the student and all possible mentors are
analysed before a match is selected. The knowledge de�ciencies of the student

1 A Pareto-optimal solution in the employment website domain is a combination of
matches between jobs and job seekers such that no single swap between a pair of job
seekers improves or maintains the satisfaction of every single person involved.

55

are found and paired with the knowledge strengths of possible mentors, as well
as with the willingness of users to become mentors.

In Broºovský and Pet°í£ek [2], collaborative �ltering is used to predict the
ratings that users will give to other users when presented with their photo. This
task is not necessarily reciprocal as it is mostly used by users who want to know
how other people rate their appearance. Despite this, Broºovský and Pet°í£ek
discuss the need for reciprocal matching algorithms as �nding that �A likes B�
does not imply that �B likes A�.

Although reciprocity is an important issue for intrinsically reciprocal tasks
such as friend recommendations on social networks and date recommendations
on online dating systems, many works such as [16, 5] do not mention the need for
reciprocity. These works seem to focus on the task of satisfying the immediate
need of the user at hand. However, improving the immediate satisfaction of the
users by providing them with people they like or believe to be their friends,
might not re�ect the �nal satisfaction of the user if these relationships are not
mutual.

Work on referral systems in social networks such as [17] could also bene�t
from reciprocity; in particular when agreement between users (or their agents) is
required. One such task is the business partner identi�cation in social networks
[15].

Little is know about the users' preference when they are new to the system.
The lack of knowledge about the user restricts the power of the system to create
recommendations. Several solutions were proposed to solve this problem, which
is commonly referred to as the cold-start problem. Park and Chu [9] de�ne four
groups of recommendations: (1) existing items to existing users; (2) existing
items to new user; (3) new items to existing users; (4) new items to new users.
The cold-start problem is relevant for all groups except (1). For group (2) rec-
ommending popular items is a good baseline, while for group (3) an approach
that takes into account the content of the items is needed. According to the
authors, group (4) is a hard case that needs a �random� strategy. Park and Chu
compared several strategies to generate the recommendations for the cold start
cases and found that their method, pairwise preference regression, outperforms
other known methods such as random, most popular, segmented most popular,
and Vibes A�nity [7].

In contrast to the cold-start problem, controlling overspecialisation is partic-
ularly important for reciprocal recommenders in domains such as online dating,
where allowing variability and a wide spread of recommendations is important.
In online dating some users receive lots of attention, while at the same time
many other users are being neglected. It is important for a recommender in this
domain not to overload the popular users and to allow neglected users to be
present in the other people's recommendations.

One strategy to ensure a balanced distribution of recommendation among
users of di�erent popularity is to recommend users among these groups. For
instance popular users would be recommended to other popular users, while less
popular users will be recommended to users with similar popularity scores. This

56

could minimize the e�ects described in [4], which demonstrated the tendency of
collaborative �ltering to recommend popular items even when the starting items
are not popular.

The work of Abbassi et al. [1] deals with overspecialisation by �nding regions
in the item space that are relatively unexplored by a user. Similarly, Onuma et al.
[8] applies a graph-based method to recommend items that are not centred in the
user's current interest area, but are borderline between distinct areas of interest.
This ensures novelty, and provides certain variety in the recommendations, that
is seen favourably by users [12].

3 Reciprocal Recommender

A recommender R1 is a system that, when given a user u, recommends a list of
items I such that the degree of preference between a user and every item in I is
larger than the degree of preference between the same user and every items not
in I. This is shown in Equation (1).

R1(u) = {i : P1(u, i) > P1(u, j),∀i ∈ I, ∀j 6∈ I} (1)

where P1 represents how much a user prefers an item.
Because a reciprocal recommender needs to consider the degree of preference

for the items in I we can build a recommender R2 that gives the best users U
for an item i, such that the degree of preference of an item i for every user in U
is larger than every user not in U (see Equation 2).

R2(i) = {u : P2(i, u) > P2(i, v),∀u ∈ U,∀v 6∈ U} (2)

where P2 represents how much a user is preferred by an item (normally repre-
sented by another user).

Therefore, the reciprocal recommender RR for a user u is a set of items I
(subset of R1(u)) such that u is in the list of recommendations R2(i) for all
items i in I (see Equation 3).

RR(u) = {i : i ∈ R1(u) and u ∈ R2(i)} (3)

3.1 Combining recommenders

To obtain a single list of recommendations from a reciprocal recommender, we
need to combine R1 and R2. Such a combination is necessary if the recommen-
dations are to take into consideration the preferences of both user and item.
Depending on the domain, we may choose di�erent methods of combination
that assign di�erent weights or meanings to each of R1 and R2. Using the ter-
minology of Burke [3], we apply the Cascade, Weighted and Switched methods
of combination in our discussion below.

If both R1 and R2 produce unranked sets of users/items as described above,
we may combining their output by �ltering out the items in R1 that are not

57

reciprocated in R2 (Equation 3). This method treats R1 and R2 equally and is
simple to compute.

If we assign a numeric score to the recommendations in R1 and R2 using
P1 and P2, we may produce a combined ranked output PRR by calculating
a weighted sum of the scores for each user/item pair (Equation 4). Using the
�exibility in the choice of weights, it is possible to give focus to either the user's
preference or the item's preferences. This customisability is useful in many cases.
For example, if the user only wants items that are highly tailored to his/her needs
and does not mind having a few unsuccessful interactions, we can give a higher
weight to the user's recommendations.

PRR(u, i) = w1P1(u, i) + w2P2(i, u) (4)

On the other extreme, if we need to recommend for a (possibly new) user for
which we have no preference information about, we may choose to entirely rely
on the item's preference for users to give the user items which will like the user.
This can be used to mitigate the cold start problem.

4 Approaches to reciprocal recommendation

Recommender systems approaches are normally divided into two main classes:
content-based and collaborative �ltering. Content-based recommender systems
take into account the content of the items that have been used by a user in
order to �nd the likes and dislikes of the user and by using these preferences
the system can �nd new and unknown items to present to the user. Conversely,
collaborative �ltering does not take into account the content of the items, but
instead analyses their usage patterns. For instance, if a group of items used by
a user A was also used by other users B and C, an item used by B and C and
not used by A is a potential good recommendation to present to A.

When both users and items are actively engaged in the search of each other,
then it would be possible to create a reciprocal recommender using any technique
and �nding the overlapping pair of users and items. For instance, in a job search
scenario where one side is looking for job positions and the employee is looking
for suitable candidates, a system can be built that �nds all positions which will
consider a particular candidate suitable. The same logic can be applied for the
employer: a system can �nd all candidates who consider the position attractive
to them. A system that is based on the overlapping recommendation is described
by [6].

However, when one side of the reciprocal recommender is not actively engaged
with the search, group generalisations may become necessary. For instance, if a
job post is advertised but the advertiser company does not actively search for
employees in the website database, then a system can generalise the job pref-
erences by using previous similar positions by the same advertiser or company,
or even previous similar positions by any company. This is one way of dealing
with the cold start problem. Generalisations can create more data and therefore

58

minimise the problems associated with lack of data. However, it is unclear when
these types of generalisations can be made.

Because similar people2 might not act similarly, generalisations are harder
to obtain when users are acting as individuals. Nevertheless, in many cases,
building stereotypes for people is required, because without it there might not
be any indication of what users might like. The lack of indication of preferences
can also arise from the speci�c task at hand, which might require users or items
to have one and only one successful interaction. For example, when someone
�nds a job using a job search website, it is likely that this person will stop using
the website and the job position will be closed. For this type of task, scaling
down the success requirements and �nding intermediate levels of interest are
required. For instance, the success of a job search website might not be de�ned
as a job position being ful�lled, but rather the engagement of the website's users
such that candidates submit applications and positions receive applications from
candidates. In this way, success is a less strict criteria, and preferences can be
more easily de�ned.

Collaborative �ltering has been shown to work well for non-reciprocal recom-
menders, and can be easily applied to a reciprocal setting. However, in situations
when generalisations are required by using previous positions and transactions,
the set of users who obtained successful interactions might not be currently avail-
able. On the other hand, content-based techniques are better able to generalise
preferences that were expressed previously by employers in di�erent posts as
these techniques are normally not bound by each individual candidate, but by
the attributes of these users. In this way, a hybrid approach for a reciprocal job
recommender could simply consist of two recommenders: one using collaborative
�ltering to recommend job positions to a candidate and one content-based to rec-
ommend candidates for a job position based on previous transactions between
similar job positions and candidates.

Traditional recommenders can also be used to generate recommendations
for reciprocal tasks. All successful and unsuccessful reciprocal transactions are
used to train the recommender, which will recommend future items which are
likely to reciprocate a transaction. However, this is only possible for systems
that contain recurrent or long term users who can and will perform multiple
successful transactions. For those systems where users are short-term and their
expectations are to �nd a life-long partner or a life-long job career, the use of a
combined, reciprocal recommender system is preferable.

Independently of the technique used, the combined reciprocal recommender
must account for the lack of information about its users and items. The way of
handling the cold-start problem is likely to be one of the major factors in�uencing
the performance of such a system.

Figure 1 illustrates a reciprocal candidate-employer recommender that uses
a recommender R1 for the candidate and a recommender R2 for the employer.

2 Assuming we have a clear de�nition of similarity for people. However the concept of
personal similarity is a whole problem on its own, which we will not address in this
paper.

59

Candidate A

Recommender
R1(A)

Employer B

Recommender
R2(B)

Candidates whom B will like

Employers whom A will like

Employer B
Candidate A

Fig. 1. Example of a reciprocal candidate-employer recommender. Recommendations
drawn with thicker lines represent those recommendations which are reciprocal (i.e.
Employer B appears in the list of recommended employers for Candidate A and Can-
didate A appears in the list of recommendations for Employer B).

The �nal recommendation for a given candidate A is a ranked list of employers
(or positions) where the top of the list is populated by those employers whose
recommenders suggest the current candidate as someone they might like (e.g.
Employer B). Likewise, the �nal recommendation for a given employer B is a
ranked list of candidates where the �rst candidates are those who would like to
be employed by the company (e.g. Candidate A).

Malinowski et al. [6] suggest seeking a Pareto-optimal solution to incorporate
the needs of both user and item in a bipartite matching problem. However, we
believe that for a reciprocal recommender, one must not seek a Pareto-optimal
solution in domains where the recommender accuracy is low, as such a solution
assumes that recommendations are mostly successful. For example, in a job
recommender, a Pareto-optimal solution may lead us to recommend the "second
best" jobs to a person, because we think there are better candidates who will take
the job. This decision is not sensible unless we are certain that our predictions
are very accurate.

5 Case study - Online dating

Online dating is one of the areas where a reciprocal recommender is very im-
portant. In the online dating domain, the item being recommended to a user is
another user who also has the same goal when using the system: to �nd a date.
Any recommendation given in a online dating scenario needs to be reciprocal
and must take into account the needs of both users being recommended to each
other. Otherwise, if a recommendation is given with only one of the users in
mind, these �good� non-reciprocal recommendations will be short lived because
user interactions resulting from these recommendations are likely not to develop
further.

60

Table 2. Di�erent levels of interest shown by users in dating websites

Action A likes B B likes A

A reads pro�le of B Possibly Unknown
A reads pro�le of B, A sends a message to B Yes Unknown
A reads pro�le of B, A does not send a message to B No Unknown
A sends a constrained message to B Yes Unknown
A sends a constrained message to B, B replies positively to A Yes Yes
A sends a constrained message to B, B replies negatively to A Yes No
A sends a unconstrained message to B without previous constrained com-
munication

Yes Unknown

A sends a unconstrained message to B without previous constrained com-
munication and receives a reply

Yes Unknown*

A sends a unconstrained message to B without previous constrained com-
munication and does not receive a reply

Yes Unknown*

Dating can translate into �nding a life-long partner or a casual/short-term
partner. Both types of users have crucial di�erences that have high implications
for an online dating website and its recommender system. Casual and short-term
relationship seekers are likely to use the website for longer periods of time and
are more likely to have �successful� relationships with di�erent people, while
long-term relationship seekers are hoping to �nd that one person who will cause
them to stop using the website.

Online dating websites (e.g. Yahoo! Personals, Match.com) allow users to
create their pro�les, browse and create constrained conversations3 for free, while
charging a fee for unconstrained communication such as email, chat and tele-
phone call. Although, in theory, success is measured by the number of people
who have found a partner using the website, in practice the best and easiest way
of measuring success is the use of unconstrained communication. The increase
in unconstrained communication is really important to online dating websites
because it can lead to a real world dating scenario and also because it directly
relates to most online dating websites' business models.

Online dating is an intrinsically reciprocal task which is very di�cult for
recommender systems for several reasons: (1) Online dating deals with a range
of features that might not be represented in the website data, such as private
personal expectations or experiences from previous relationships. (2) There are
multiple fuzzy levels of interests between users, which are di�cult to capture. (3)
Users may seek communication with others whose pro�les do not precisely agree
with the users' explicit preferences. (4) People change preferences over time.

Di�culty (1) is beyond the scope of this research as it involves psychological
and sociological issues, which we cannot currently address. The di�erent levels of
interests of di�culty (2) can be addressed during website design. Existing web-
sites show di�erent levels of interest similar to the ones shown in Table 2. Some
of the level of interest of user B toward user A that are marked as unknown and
are marked with an asterisk can only be determined if the exchanged messages
between users are read and analysed.

3 Constrained conversation are �xed and prede�ned messages that users exchange in
order to show interest (or not) in each other.

61

 0

 20

 40

 60

 80

 100

Age

Body type

Sm
oke

H
eight

Education

Ethnicity

R
eligion

Star sign

%
 o

f m
es

sa
ge

s

Match Do not match % of total messages

Fig. 2. Percentage of contacts from users which follows and does not follow the extrinsic
model of preferences de�ned by the user

Di�culty (3) involves the creation of intrinsic models of user preference and
how they di�er from the extrinsic models created by the user. We observed that
although people can de�ne the characteristics of those they wish to date, users of
online dating systems communicate with people whose features are di�erent to
the ones they speci�ed. Figure 2 shows the percentage of constrained messages
that were sent to a user who did not possess an important feature that was
speci�ed by the sender. For instance, 14% of messages from people with extrinsic
preference were sent by users who speci�ed education as an important attribute,
30% of those messages were sent to users who had a di�erent level of education
to the one speci�ed in the sender's preferences. This either indicates that users
cannot properly de�ne the desired characteristics of their ideal date, or that
users are willing to deviate from their ideal date when a potentially good date is
found.

We believe that although an ideal date description is better than no de-
scription at all, the most reliable representation of someone's preferences can be
inferred using the person's online date contacts. The inferred representation can
be used to create reciprocal or non-reciprocal recommenders that produce lists
of recommendations that match each user's own preferences.

As most content-based recommenders, such recommenders based on prefer-
ence may su�er from lack of training data and over-specialisation. It is important
to account for changes to user preferences (di�culty 4); such an e�ect can be
harder to identify when a large body of previous contact is used to inferred the
user's preferences. It is also important to learn how much evidence is needed to
be able to provide a reliable recommendation. For instance, if user A contacted
B and B is the only user contacted by A, a recommender system cannot assume
that A only wants to contact users with the same features as B.

62

The use of reciprocal recommenders in online dating allows the creation of
meaningful recommendations even when no preferences can be established for
some users. For instance, in the cold start problem, if a user is new to the system
and has not explicitly de�ned his/her preferences, nor contacted any other user
(i.e. no implicit preferences), we can assume that this user does not have a pref-
erence and he/she will like any user. With this assumption, we can either create
a list of recommendations for recommender R1 (or for recommender R2) that
involves all users in the system. With such list, the reciprocal recommendation
RR(u) for a new user u is all users i whose preferences match user u. Similarly,
if we only know the preferences of a user x then the reciprocal recommender
RR(x) for this user is equivalent to his non-reciprocal recommender R1(x).

It is important to highlight that the degree of preference between a user with
no known preferences and all users in the database has to be kept small, but
non-zero. The degree of preference must be kept small so it does not interfere
with the reciprocity when preferences are known. In this way, a ranked list of
recommendations should contain all users who reciprocally match each other's
preferences followed by a list of users who likes the user being recommended or
is liked by him/her.

Another di�culty with implementing reciprocal recommenders and in partic-
ular with dating websites is that although some users are clearly more popular
than others, the website needs to be careful to balance the load of the recom-
mendations in order not to overwhelm users and to provide a good opportunity
for interaction to all the users. Popular users might have characteristics that
make them popular, such as a beautiful face or a charming smile, but they will
not respond positively to everyone. On the other hand, there is a large number
of users who do not have the same appeal as the popular users but are more
likely to engage in successful interactions with other users.

6 Concluding remarks

In this paper we de�ned Reciprocal Recommenders, a class of recommender
systems applicable to a number of domains such as online dating, recommending
mentors, business partners or friends. This type of recommenders di�ers from
the traditional recommender systems and has not received su�cient attention in
the recommender community. We reviewed the relevant literature highlighting
the need and importance of reciprocity in certain tasks. We identi�ed challenges
and discussed promising approaches to address them. Finally, we presented a
case study in the area of online dating, illustrating the important concepts.

We have already implemented di�erent techniques for reciprocal recommen-
dations, which we plan to evaluate using data from an existing online dating
website and also from an employment website. Future work will also include
measuring the impact of reciprocity in domains where reciprocity is not obvious
such as in online auctions and classi�ed advertising.

63

Acknowledgements

This research was funded by the Smart Services Co-operative Research Centre.

References

1. Z. Abbassi, S. Amer-Yahia, L. V. Lakshmanan, S. Vassilvitskii, and C. Yu. Getting
recommender systems to think outside the box. In RecSys '09: Proceedings of the

third ACM conference on Recommender systems, pages 285�288, New York, 2009.
2. L. Broºovský and V. Pet°í£ek. Recommender system for online dating service.

CoRR, abs/cs/0703042, 2007.
3. R. Burke. Hybrid recommender systems: Survey and experiments. User Modeling

and User-Adapted Interaction, 12(4):331�370, 2002.
4. O. Celma and P. Cano. From hits to niches?: or how popular artists can bias music

recommendation and discovery. In NETFLIX '08: Proceedings of the 2nd KDD

Workshop on Large-Scale Recommender Systems and the Net�ix Prize Competition,
pages 1�8, New York, NY, USA, 2008. ACM.

5. R. F. Emmerink. Ai dating: Development of a novel dating application with fuzzy
inferencing. Master's thesis, Faculty of Computing Sciences and Engineering, De
Montfort University, September 12 2008.

6. J. Malinowski, T. Keim, O. Wendt, and T. Weitzel. Matching people and jobs:
A bilateral recommendation approach. In Proceedings of the 39th Annual Hawaii

International Conference on System Sciences, volume 6, page 137c, 2006.
7. B. Nag. Vibes: A platform-centric approach to building recommender systems.

IEEE Data Eng. Bull., 31(2):23�31, June 2008.
8. K. Onuma, H. Tong, and C. Faloutsos. Tangent: a novel, 'surprise me', recom-

mendation algorithm. In Proceedings of the 15th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 657�666, 2009.
9. S. T. Park and W. Chu. Pairwise preference regression for cold-start recommen-

dation. In RecSys '09: Proceedings of the third ACM conference on Recommender

systems, pages 21�28, New York, NY, USA, 2009. ACM.
10. D. Richards, M. Taylor, and P. Busch. Expertise recommendation: A two-way

knowledge communication channel. Autonomic and Autonomous Systems, Inter-

national Conference on, 0:35�40, 2008.
11. J. B. Schafer, J. A. Konstan, and J. Riedl. E-commerce recommendation applica-

tions. Data Min. Knowl. Discov., 5(1-2):115�153, 2001.
12. K. Swearingen and R. Sinha. Beyond algorithms: An HCI perspective on recom-

mender systems. In ACM SIGIR'01 Workshop on Recommender Systems, 2001.
13. L. Terveen and D. W. McDonald. Social matching: A framework and research

agenda. ACM Transactions on Computer-Human Interaction, 12(3):401�434, 2005.
14. J. Vassileva, G. Mccalla, and J. Greer. Multi-agent multi-user modeling in i-help.

User Modeling and User-Adapted Interaction, 13(1-2):179�210, 2003.
15. P. L.-K. Wong and P. Ellis. Social ties and partner identi�cation in sino-hong kong

international joint ventures. J. Int. Bus. Stud., 33(2):267�289, 2002.
16. Z. Wu, S. Jiang, and Q. Huang. Friend recommendation according to appearances

on photos. In MM '09: Proceedings of the seventeen ACM international conference

on Multimedia, pages 987�988, New York, NY, USA, 2009. ACM.
17. B. Yu and M. P. Singh. Searching social networks. In AAMAS '03: Proceedings

of the second international joint conference on Autonomous agents and multiagent

systems, pages 65�72, New York, NY, USA, 2003. ACM.

64

Recommending based on rating frequencies:
Accurate enough?

Fatih Gedikli and Dietmar Jannach

Technische Universität Dortmund,
44227 Dortmund, Germany

{firstname.lastname}@tu-dortmund.de

Abstract. Since the development of the comparably simple neighbor-
hood-based methods in the 1990s, a plethora of techniques has been
developed to improve various aspects of collaborative filtering recom-
mender systems such as predictive accuracy, scalability to large problem
instances or the capability to deal with sparse data sets. Many of the
recent algorithms rely on sophisticated methods which are based, for
instance, on matrix factorization techniques or advanced probabilistic
models or require computationally intensive model-building phases. In
this work we evaluate the accuracy of a new and extremely simple pre-
diction method that uses the user’s and the item’s most frequent rating
value to make a rating prediction. The evaluation on two standard test
data sets shows that the accuracy of the algorithm is on a par with the
standard collaborative filtering algorithms on dense data sets and out-
performs them on sparse rating databases. Besides that, the algorithm’s
implementation is trivial, has a high prediction coverage, requires no
complex offline pre-processing or model-building phase and can generate
predictions in a constant time.

1 Introduction

Collaborative filtering is one of the most successful technologies for recommender
systems [AT05]. Pure collaborative filtering recommender systems only rely on
a given user-item rating matrix to make rating predictions for items that the ac-
tive user has not seen yet. Early neighborhood-based recommendation schemes
simply used the k nearest neighbors (kNN) as predictors for unseen items. Later
on, a broad range of more advanced and sophisticated methods have been ap-
plied to better exploit the given rating information and to improve the recom-
mendation process in one or the other dimension. Examples for such methods
include matrix factorization, various probabilistic models, clustering techniques,
graph-based approaches as well as machine learning techniques, based on, e.g.,
association rule mining, see also [AT05].

Typically, the more elaborate approaches outperform the commonly-used
kNN baseline method in terms of accuracy in particular for sparse data sets or
in terms of scalability as they rely on offline pre-processing or model-building
phases. In [LM05], Lemire and Maclachlan formulate additional desirable fea-
tures of a recommendation scheme such as that they are easy to implement, can

65

be updated on the fly, are efficient at query time and are “reasonably” accurate.
Their evaluation shows that the proposed Slope One family of item-based recom-
mender algorithms, which is based on the computation of “popularity differen-
tials between items for users”, leads despite its simplicity to relatively accurate
predictions (measured in terms of Mean Absolute Error). Due to its simplicity,
different implementations of the algorithm in various programming languages
and frameworks are available today.

In this paper, we propose an even simpler recommendation scheme, RF-Rec,
which is only based on the absolute frequencies of the different rating values per
user and per item. The method is therefore trivial to implement, can generate
predictions in constant time, does not require a computationally intensive offline
model-building phase, and at the same time leads to competitive prediction
coverage and accuracy results in particular for sparse data sets.

In the rest of the paper, we will first describe the RF-Rec recommendation
scheme in more detail and present results of an experimental evaluation on two
commonly-used data sets.

2 Recommending based on rating frequencies

Let us illustrate the RF-Rec recommendation scheme with a simplified and rel-
atively sparse rating database shown in Figure 1. The goal in our example is to
predict Alice’s rating for item I3.

I1 I2 I3 I4 I5 Average

Alice 1 1 ? 5 4 2.75

U1 2 5 5 5 4.25

U2 1 1 1.00

U3 5 1 1 2 2.25

Average 1.50 3.00 2.33 3.00 3.67

Fig. 1. Example user-item rating matrix.

When adopting a user-based kNN scheme, probably no prediction can be
made because only one relatively similar user U1 exists which could be taken
as a predictor for Alice. If we allow also such small neighborhood sizes, the
prediction for Alice will usually consist of taking the neighbor’s rating for I3
and using it for the prediction by making a weighted addition to Alice’s average
rating. Similarly, in an item-based kNN approach, Alice’s rating value for item
I4, whose rating vector is similar to the one of I3 will be taken as a predictor.
In both cases, the prediction for Alice for item I3 will be rather high.

In our approach, however, the predictions are based on absolute rating fre-
quencies. The prediction function for a given user u and an item i in the RF-

Rec recommendation scheme is defined as follows:

66

pred(u, i) = argmax
r∈possibleRatings

((
freqUser(u, r) + 1 + 1avg−user(u, r)

) ∗
(
freqItem(i, r) + 1 + 1avg−item(i, r)

))

where freqUser(u, r) is the frequency of ratings with value r of the target
user u and freqItem(i, r) is the frequency of ratings with value r of the target
item i. 1avg−user(u, r) and 1avg−item(i, r) are indicator functions which return 1
if the given rating corresponds to the rounded average rating of the target user
or target item accordingly and 0 otherwise.

In the example, where the frequency of ratings of Alice are [1:2, 2:0, 3:0, 4:1,
5:1] and the rating frequencies of item I3 are [1:2, 2:0, 3:0, 4:0, 5:1] we would do
the following calculations:

Rating value 1: (2+1+0)*(2+1+0) = 9
Rating value 2: (0+1+0)*(0+1+1) = 2
...
Rating value 5: (1+1+0)*(1+1+0) = 4

Since the formula result for rating 1 is the highest, we would predict that Alice
would give a “1” to item I3, which is strongly different from the ratings that we
would predict with the other methods.

The rationale of the prediction scheme is as follows. First, instead of taking
rating averages into account for the calculations (as done in kNN-based ap-
proaches and also in Slope One) we rely on rating frequencies. Intuitively, this
can be advantageous in case of extreme ratings, i.e., since Alice only gave very
low and very high ratings and at the same time item I3 also only received ex-
treme ratings. Incorporating user or item averages would move the predictions
away from these extremes. When using the Slope One scheme, 2.38 would be
the predicted rating for Alice, which is slightly below her average. Note that in
[HKR00], the authors Herlocker et al. have also observed that high variance in
the rating data can lead to decreased recommendation accuracy.

The “1” in the middle of our formula is used to avoid that in situations, in
which a user has never given a rating (or an item never received a particular
rating), the whole term is multiplied with zero. The indicator function in our
scheme shall help in situations, in which several ratings have the same frequency
counts. If this is the case and in addition one of these ratings corresponds to the
average rating, we add some small extra weight to it, thus very slightly preferring
the average rating.

Regarding prediction coverage, that is, the question for what percentage of
items a recommender can generate predictions, note that in contrast to kNN
approaches that often use similarity and neighborhood size thresholds, our rec-
ommendation scheme can make predictions if at least one rating for the target
item or one rating by the user is available.

67

In order to measure the predictive accuracy of the method, we therefore
evaluated our approach on two popular data sets using a common experimental
procedure and accuracy metric. The results are described in the following section.

3 Experimental Evaluation

Algorithms, data sets and metrics. As data sets for the evaluation, we
used the 100k-MovieLens rating database (100,000 ratings by 943 users on 1,682
items) and a snapshot of the Yahoo!Movies data set (211,231 ratings by 7,642
users on 11,915 items)1. The MovieLens data set only contains users who have
rated at least 20 items; the minimum number of rated items per user in the
Yahoo! data set is 10.

The density level of the data sets were varied by using subsamples of different
sizes. The smallest subsample contained 10% of the original data. In this sub-
sample, the average number of ratings per user was around 10 for the MovieLens
data set and 3 for the Yahoo!Movies data set. Further measurements were taken
in steps of 10% up to the 90% data set, which corresponds to the usual 90%
train/test ratio for Mean Absolute Error (MAE) measurements.

We compared the following algorithms: user-based kNN (using default vot-
ing, Pearson similarity and the neighborhoodsize of 30 as suggested as optimal
value in literature), item-based kNN (Mahout’s item-based kNN-method imple-
mentation with Pearson similarity)2, Slope One [LM05], Bias from Mean, Per
User Average, the recent recursive prediction algorithm (RPA) [ZP07] (using
larger, empirically determined neighborhood sizes of 100) and RF-Rec.

Results. Figure 2 (a) shows the MAE values for different training set sizes
for the MovieLens data set. Up to the 50% level, RF-Rec has consistently bet-
ter accuracy than all other techniques. Above that level, the accuracy of RF-

Rec (0.742) is comparable to Slope One (0.743) and RPA (0.734). Note that
RF-Rec due to its nature leads to 100% prediction coverage also for very sparse
data sets. In contrast, the coverage of the user-based kNN method, for example,
slowly increases from 60% to 95% when increasing training set ratio from 10% to
90%, see Figure 3. In the experiments, we further varied the neighborhood size
ns of the user-based kNN method. Increasing ns to 300 lead to the observation
that the accuracy improved and was comparable to the one of RPA for training
set sizes higher than 50%.

Figure 2 (b) shows the results for the Yahoo! data set. We can observe similar
accuracy values also for this data set. In particular, the improvement of our RF-

Rec algorithm is even stronger on that data set. A possible explanation for
this observation could be the different sparsity levels of the two data sets, i.e.,
assuming that RF-Rec works particularly well for sparse settings, it is intuitive
that even better results can be achieved on the sparser Yahoo! data set (0.9976
sparsity) than on the MovieLens data set (0.9369 sparsity).

1 http://www.grouplens.org/node/73, http://webscope.sandbox.yahoo.com
2 http://lucene.apache.org/mahout

68

0,73

0,75

0,77

0,79

0,81

0,83

0,85

0,87

0,89

0,91

0,93

0,95

0,97

0,99

10% 20% 30% 40% 50% 60% 70% 80% 90%

M
A

E

(a) Training set ra!o (MovieLens)

0,70

0,72

0,74

0,76

0,78

0,80

0,82

0,84

0,86

0,88

0,90

0,92

0,94

0,96

0,98

1,00

1,02

1,04

1,06

1,08

1,10

1,12

1,14

1,16

1,18

10% 20% 30% 40% 50% 60% 70% 80% 90%

M
A

E

(b) Training set ra!o (Yahoo!Movies)

Per User Average Bias From Mean (Non Personalized) Item-based Pearson

User-based Pearson[neighborhood:30] RPA[neighborhood:100:100] Slope One

RF-Rec

Fig. 2. MAE values for different training set sizes: MovieLens (a), Yahoo!Movies (b).

Training set ratio RF-Rec Slope One User-based kNN Item-based kNN

10% 100% 97% 60% 44%
20% 100% 98% 58% 94%
30% 100% 99% 70% 98%
..

90% 100% 99% 95% 99%

Fig. 3. Prediction coverage of recommendation approaches (MovieLens).

Overall, these accuracy findings indicate that RF-Rec has a constantly good
performance which is quite independent of the training set ratio. RF-Rec is
despite its simplicity suitable to generate predictions with an accuracy which is
comparable to existing approaches and is even better for sparse data sets, which
can often be found in practice.

Computational complexity. In the RF-Rec scheme, the “model-building”
phase obviously consists of calculating the frequencies of the individual rating
values per user and per item, which can be accomplished in a single scan of
the matrix; the frequency statistics can be easily updated when new ratings
are available. Given u users, i items and v possible rating values, the memory
requirements for the model are constant: (u ∗ v) + (i ∗ v). Also the calculation
of predictions can be done with the formula from Section 2 in constant time.
In absolute numbers, “model-building” requires less than 10 seconds even when
hundreds of millions of ratings exist; predictions can be calculated in a few mil-
liseconds on a standard desktop computer. We compared our method with Ma-
hout’s item-based kNN-method implementation on the 1 million MovieLens data
set: model-building takes 500ms in our approach as opposed to 6 minutes with

69

Mahout. Generating a prediction takes only 3ms in our framework (and 100ms
with Mahout), which is a very important factor in high-traffic recommenders in
which up to 1,000 parallel requests have to be served [JH09].

4 Summary

In this work we proposed a new, frequency-based recommendation scheme that
leads to good predictive accuracy and is at the same time highly scalable and
very easy to implement. Our future work includes the evaluation of the approach
on the Netflix data in order to compare it to the results of more recent methods;
in addition, we will also compare the predictive accuracy of the different methods
based on precision and recall.

Overall, our evaluation demonstrated that comparably good results can be
achieved with simple methods and that the accuracy values that can be achieved
with the help of “classical” methods such as item-based kNN and even the more
recent RPA method are actually very small, which could make the payoff of
using more sophisticated methods in some settings questionable.

We hope that light-weight approaches like our RF-Recmethod help to further
promote the use of recommender systems in practice; by making the software
used in our experiments publicly available3, we hope to contribute to the compa-
rability of different algorithms since our study revealed that relevant algorithmic
details and parameters are often not reported in sufficient detail.

References

[AT05] Gediminas Adomavicius and Alexander Tuzhilin, Toward the next generation
of recommender systems: A survey of the state-of-the-art and possible exten-
sions, IEEE Trans. on Knowl. and Data Eng. 17 (2005), no. 6, 734–749.

[HKR00] Jonathan L. Herlocker, Joseph A. Konstan, and John Riedl, Explaining col-
laborative filtering recommendations, Proc. ACM Conference on Computer
Supported Cooperative Work (New York, NY, USA), 2000, pp. 241–250.

[JH09] Dietmar Jannach and Kolja Hegelich, A case study on the effectiveness of
recommendations in the mobile internet, Proceedings of the 2009 ACM Con-
ference on Recommender Systems (New York, NY, USA), 2009, pp. 41–50.

[LM05] Daniel Lemire and Anna Maclachlan, Slope one predictors for online rating-
based collaborative filtering, Proceedings of the 5th SIAM International Con-
ference on Data Mining (Newport Beach, CA), 2005, pp. 471–480.

[ZP07] Jiyong Zhang and Pearl Pu, A recursive prediction algorithm for collaborative
filtering recommender systems, Proceedings of the 2007 ACM Conference on
Recommender Systems (Minneapolis, MN, USA), 2007, pp. 57–64.

3 http://ls13-www.cs.uni-dortmund.de/rec suite.zip

70

