

Semantic Web Access and Personalization research group http://www.di.uniba.it/~swap

Content-based Recommender Systems problems, challenges and research directions

Giovanni Semeraro & the SWAP group <u>http://www.di.uniba.it/~swap/</u> semeraro@di.uniba.it

Department of Computer Science University of Bari "Aldo Moro"

UMAP 2010 – 8° Workshop on INTELLIGENT TECHNIQUES FOR WEB PERSONALIZATION & RECOMMENDER SYSTEMS (ITWP 2010) BIG ISLAND OF HAWAII, JUNE 20 2010

Outline

Content-based Recommender Systems (CBRS)

- ✓ Basics
- Advantages & <u>Drawbacks</u>
- Orawback 1: Limited content analysis
 - Beyond keywords: Semantics into CBRS
 - Taking advantage of Web 2.0: Folksonomy-based CBRS
- **3** Drawback 2: Overspecialization
 - Strategies for diversification of recommendations

Content-based Recommender Systems (CBRS)

Recommend an item to a user based upon a description of the item and a profile of the user's interests

Implement strategies for:

- representing items
- creating a user profile that describes the types of items the user likes/dislikes
- comparing the user profile to some reference characteristics (with the aim to predict whether the user is interested in an unseen item)

[Pazzani07] Pazzani, M. J., & Billsus, D. Content-Based Recommendation Systems. *The Adaptive Web*. Lecture Notes in Computer Science vol. 4321, 325-341, 2007.

Content-based Filtering

Content-based Filtering

- Each user is assumed to operate independently
- Items are represented by some features
 - Movies: actors, director, plot, ...
- 3 The profile is often created and updated automatically in response to feedback on the desirability of items that have been presented to the user
 - Machine Learning for automated inference
 - Relevance judgment on items, e.g. ratings
 - ✓ Training on rated items \rightarrow user profile
- 4 Filtering based on the comparison between the content (features) of the items and the user preferences as defined in the user profile
 - \checkmark Keyword-based representation for content and profiles \rightarrow string matching or text similarity

General Architecture of CBRS

Advantages of CBRS

USER INDEPENDENCE

- CBRS exploit solely ratings provided by the active user to build her own profile
- No need for data on other users
- 2 TRANSPARENCY
 - CBRS can provide explanations for recommended items by listing content-features that caused an item to be recommended
- **3** NEW ITEM (Item not yet rated by any user)
 - CBRS are capable of recommending new and unknown items
 - No first-rater problem

Drawbacks of CBRS: LIMITED CONTENT ANALYSIS

- No suitable suggestions if the analyzed content does not contain enough information to discriminate items the user likes from items the user does not like
- **2** Content must be encoded as meaningful **features**
 - automatic/manually assignment of features to items might be insufficient to define distinguishing aspects of items necessary for the elicitation of user interests
 - keywords not appropriate for representing content, due to polysemy, synonymy, multi-word concepts (homography, homophony,...) –
 "Sator arepo eccetera" [Eco07]

Keyword-based Profiles

Keyword-based Profiles

Keyword-based Profiles

POLYSEMY

NLP methods are needed for the elicitation of user interests

Drawbacks of CBRS: OVERSPECIALIZATION

- CBRS suggest items whose scores are high when matched against the user profile
 - the user is going to be recommended items similar to those already rated
- 2 No inherent method for finding something unexpected
- Obviousness in recommendations
 - suggesting "STAR TREK" to a science-fiction fan: accurate but not useful
 - users don't want algorithms that produce better ratings, but sensible recommendations

4 The Serendipity Problem

[McNee06] S.M. McNee, J. Riedl, and J. Konstan. Accurate is not always good: How accuracy metrics have hurt recommender systems. In *Extended Abstracts of the 2006 ACM Conference on Human Factors in Computing Systems*, pages 1-5, Canada, 2006.

The serendipity problem: mind cages

Homophily: the tendency to surround ourselves by like-minded people

opinions taken to extremes cultural impoverishment

The homophily trap

- Does homophily hurt RS?
 - try to tell Amazon that you liked the movie "War Games"...

[Zuckerman08] E. Zuckerman. Homophily, serendipity, xenophilia. April 25, 2008. www.ethanzuckerman.com/blog/2008/04/25/homophily-serendipity-xenophilia/

The homophily trap

"Item-to-Item" homophily... Harry Potter for ever?

Harry Potter and the Deathly Hallows (Book 7) (Paperback) (Paperback) by J.K. Rowling (Author)	Quantity: 1
List Price: \$14.99 Price: \$10.19 & eligible for FREE Super Saver Shipping on orders over \$25. Details	or Sign in to turn on 1-Click ordering.
You Save: \$4.80 (32%)	Add to Wish List
In Stock. Ships from and sold by Amazon.com. Gift-wrap available.	Add to Shopping List
	Add to Baby Registry

Frequently Bought Together

This item: Harry Potter and the Deathly Hallows (Book 7)
 Harry Potter and the Half-Blood Prince (Book 6)
 Harry Potter and the Order of the Phoenix (Book 5)

Looking for "harry potter" Products? Other customers suggested these items:

Harry Potter and the Deathly Hallows (Book 7) by J. K. Rowling \$20.46 Suggested by 1548 customers

Harry Potter and the Half-Blood Prince (Book 6) by J. K. Rowling ACC (3,625) \$19.10 Suggested by 508 customers

Harry Potter and the Sorcerer's Stone (Book 1) by J.K. Rowling Active (5,513) \$16.49 Suggested by 474 customers

Novelty vs Serendipity

- Novelty: A novel recommendation helps the user find a surprisingly interesting item she <u>might</u> have autonomously discovered
- Serendipity: A serendipitous recommendation helps the user find a surprisingly interesting item she <u>might not</u> have otherwise discovered
- How to introduce serendipity in (CB)RS?

[Herlocker04] Herlocker, J.L., Konstan, J.A., Terveen, L.G., and Riedl, J.T. Evaluating Collaborative Filtering Recommender Systems. *ACM Transactions on Information Systems*, 22(1): 39-49, 2004.

"Computational" serendipity? A motivating example

in Las Vegas?

Putting Intelligence into CBRS: Challenges & Research Directions

PROBLEMS	CHALLENGES	RESEARCH DIRECTIONS
Limited Content Analysis	Beyond keywords: novel strategies for the representation of items and profiles	 Semantic analysis of content by means of external knowledge sources Language-independent CBRS
	Taking advantage of Web 2.0 for collecting User Generated Content	Folksonomy-based CBRS
Overspecialization	Defeating homophily: recommendation diversification	 "computational" serendipity -> programming for serendipity Knowledge Infusion

Putting Intelligence into CBRS: Challenges & Research Directions

PROBLEMS	CHALLENGES	RESEARCH DIRECTIONS
Limited Content Analysis	Beyond keywords: novel strategies for the representation of items and profiles	 Semantic analysis of content by means of external knowledge sources Language-independent CBRS
	Taking advantage of Web 2.0 for collecting User Generated Content	Folksonomy-based CBRS
Overspecialization	Defeating homophily: recommendation diversification	 "computational" serendipity -> programming for serendipity Knowledge Infusion

Semantic Analysis: beyond keywords

Semantic Analysis =

1. Semantics: concept identification in text-based representations through advanced NLP techniques \rightarrow "*beyond keywords*"

2. Personalization: representation of user information needs in an effective way → "*deep (high-accuracy) user profiles*"

+

Beyond keywords: Word Sense Disambiguation (WSD) - from words to meanings

 WSD selects the proper meaning (*sense*) for a word in a text by taking into account the context in which that word occurs

[Basile07] P. Basile, M. Degemmis, A. Gentile, P. Lops, and G. Semeraro. UNIBA: JIGSAW algorithm for Word Sense Disambiguation. In *Proceedings of the 4th ACL 2007 International Workshop on Semantic Evaluations (SemEval-2007), Prague, Czech Republic*, pages 398-401, Association for Computational Linguistics, June 23-24, 2007.

ITR (ITem Recommender) Sense-based Profiles

ITR (ITem Recommender) Sense-based Profiles

ITR (ITem Recommender) Sense-based Profiles

[Degemmis07] M. Degemmis, P. Lops, and G. Semeraro. A Content-collaborative Recommender that Exploits WordNetbased User Profiles for Neighborhood Formation. *User Modeling and User-Adapted Interaction*. *The Journal of Personalization Research (UMUAI)*, 17(3):217–255, Springer Science + Business Media B.V., 2007.

[Semeraro07] G. Semeraro, M. Degemmis, P. Lops, and P. Basile. Combining Learning and Word Sense Disambiguation for Intelligent User Profiling. In M. M. Veloso, editor, *IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, January 6-12, 2007*, pages 2856–2861. Morgan Kaufmann, 2007.

Advantages of Sense-based Representations

- Semantic matching between items and profiles
 - computing semantic relatedness [Pedersen04] rather than string matching (e.g., by using similarity measures between WordNet synsets)
- **2** Senses are inherently multilingual
 - Concepts remain the same across different languages, while terms used for describing them in each specific language change
- Improving transparency
 - matched concepts can be used to justify suggestions
- 4 Collaborative Filtering could benefit too
 - finding better neighbors: similar users discovered by looking at profile overlap even if they did not rate the same items
 - semantic profiles succeed where Pearson's correlation coefficient fail

[Pedersen04] Pedersen, Ted and Patwardhan, Siddharth, and Michelizzi, Jason. WordNet::Similarity - Measuring the Relatedness of Concepts. In *Proceedings of the Nineteenth National Conference on Artificial Intelligence* (AAAI-2004), pp. 1024-1025, San Jose, CA, July, 2004.

Sense-based profiles in a hybrid CB-CF recommender

 Sense-based profiles obtained by applying WSD on textual description of items 27/89

- WordNet as sense repository
- Synset-based user profiles
- Hybrid CB-CF RS

[Degemmis07] M. Degemmis, P. Lops, and G. Semeraro. A Content-collaborative Recommender that Exploits WordNetbased User Profiles for Neighborhood Formation. *User Modeling and User-Adapted Interaction: The Journal of Personalization Research (UMUAI)*, 17(3):217-255, Springer Science + Business Media B.V., 2007.

Sense-based profiles in a hybrid CB-CF recommender

Clustering of sense-based profiles

Experimental Evaluation on EachMovie dataset

835 users selected from EachMovie dataset*

- 1,613 movies grouped into 10 categories, 180,356 ratings, user-item matrix 87% sparse
- Each user rated between 30 and 100 movies
- Discrete ratings between 0 and 5
- Movie content crawled from the Internet Movie Database (IMDb)
- CF algorithm using Pearson's correlation coefficient vs. CF algorithm integrating clusters of semantic user profiles

*2,811,983 ratings entered by 72,916 users for 1628 different movies. As of October, 2004, HP/Compaq Research (formerly DEC Research) retired the EachMovie dataset. It is no longer available for download

Sense-based profiles improve recommendations

Rating scale: 0-5

Semantic Analysis: Ontologies in CBRS

SYSTEM	DESCRIPTION
SEWeP (Semantic Enhancement for Web Personalization) [Eirinaki03]	Manually built domain-specific taxonomy of categories for the automated annotation of Web pages WordNet-based word similarity used to map keywords to categories
	Categories of interest discovered from navigational history of the user
Quickstep & Foxtrot [Middleton04]	Recommendation of on-line academic research papers
	Research paper topic ontology based on the computer science classification of the DMOZ open directory project
	K-NN classification used to associate classes to previously browsed papers

[Lops10] P. Lops, M. de Gemmis, G. Semeraro. Content-based Recommender Systems: State of the Art and Trends. In: P. Kantor, F. Ricci, L. Rokach and B. Shapira (Eds.), *Recommender Systems Handbook: A Complete Guide for Research Scientists & Practitioners*, Chapter 3, pages 73-105, BERLIN: Springer, 2010.

Semantic Analysis: Ontologies in CBRS

SYSTEM	DESCRIPTION
Informed Recommender [Aciar07]	Consumer product reviews to make recommendations
	Ontology used to convert consumers' opinions into a structured form
	Text-mining for mapping sentences in the reviews into the ontology information structure
	Search-based recommendations
	OWL ontology for representing TV programs and user profiles
RS for Interactive Digital Television [Blanco-Fernandez08]	OWL representation allows reasoning on preferences and discovering new knowledge
	Spreading activation for matching items and preferences
News@hand [Cantador08]	Ontology-based news recommender
	17 ontologies adapted from the IPTC ontology (http://nets.ii.uam.es/neptuno/iptc/)
	Items and user profiles represented as vectors in the space of concepts defined by the ontologies

Semantic Analysis: Wikipedia

- Do we really need only ontologies?
 - What about encyclopedic knowledge sources available on the Web?
- Is Wikipedia potentially useful for CBRS? How?
 - ✓ It is free
 - It covers many domains
 - It is under constant development by the community
 - It can be seen as a multilingual corpus
 - Its accuracy rivals that of Encyclopaedia Britannica [Giles05]

[Giles05] J. Giles. Internet Encyclopaedias Go Head to Head. Nature, 438:900-901, 2005.

Explicit Semantic Analysis (ESA)

Technique able to provide a fine-grained semantic representation of natural language texts in a high-dimensional space of comprehensible concepts derived from Wikipedia [Gabri06]

[Egozi09] O. Egozi. *Concept-Based Information Retrieval using Explicit Semantic Analysis*. M.Sc. Thesis, CS Dept., Technion, 2009.

Wikipedia viewed as an <u>ontology</u> = a collection of ~<u>1M</u> concepts

[Gabri06] E. Gabrilovich and S. Markovitch. Overcoming the Brittleness Bottleneck using Wikipedia: Enhancing Text Categorization with Encyclopedic Knowledge. In *Proceedings of the 21th National Conf. on Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference*, pages 1301–1306. AAAI Press, 2006.

Explicit Semantic Analysis (ESA)

Wikipedia is viewed as an **<u>ontology</u>** - a collection of ~<u>1M</u> concepts

Every Wikipedia article represents a concept

From Wikipedia, the free encyclopedia		Danthara
Panthera is a genus of the family Felidae (the cats) which contains four well-known living species: the lion, tiger, jaguar, and leopard. The genus comprises about half of the big cats. One meaning of the word <i>panther</i> is to designate cats of this family. Only these four cat species have the anatomical changes enabling them to roar. The primary reason for this was assumed to be the incomplete ossification of the hyoid bone. However, new studies show that the ability to roar is due to other morphological features, especially of the larvar. The snow leopard Uncla uncla, which is	Panthera	Pantnera
sometimes included within <i>Panthera</i> , does no roar. Although it has an incomplete ossification of the hyoid bone, it lacks the special morphology of the larynx, which is	Tiger	Cat [0.92]
typical for lions, tigers, jaguars and leopards ^[1]	Scientific classification	
Species and subspecies [edit]	Phylum: Chordata	Leopard [0.84]

Article words are associated with the **concept** (TF-IDF)

Roar [0.77]

Explicit Semantic Analysis (ESA)

Wikipedia is viewed as an **ontology** - a collection of ~**<u>1M</u>** concepts

[edit]

Every Wikipedia article represents a concept

Panthera

From Wikipedia, the free encyclopedia

Panthera is a genus of the family Felidae (the cats), which contains four well-known living species: the lion, tiger, jaguar, and leopard. The genus comprises about half of the big cats. One meaning of the word **panther** is to designate cats of this family. Only these four cat species have the anatomical changes enabling them to roar. The primary reason for this was assumed to be the incomplete ossification of the hyoid bone. However, new studies show that the ability to roar is due to other morphological features, especially of the larynx. The snow leopard, *Uncia uncia*, which is sometimes included within *Panthera*, does not roar. Although it has an incomplete ossification of the hyoid bone, it lacks the special morphology of the larynx, which is typical for lions, tigers, jaguars and leopards.^[1]

Species and subspecies

Chordata

Phylum

Article words are associated with the **concept** (TF-IDF)

Panthera

Cat [0.92]

Leopard [0.84]

Roar [0.77]
Explicit Semantic Analysis (ESA)

Wikipedia is viewed as an **<u>ontology</u>** - a collection of ~<u>1M</u> concepts

Explicit Semantic Analysis (ESA)

The semantics of a text fragment is the average vector (centroid) of the semantics of its words

ESA: concept space

[Gabri07] E. Gabrilovich and S. Markovitch. Computing Semantic Relatedness Using Wikipedia-based Explicit Semantic Analysis. In Manuela M. Veloso, editor, *Proceedings of the 20th International Joint Conference on Artificial Intelligence*, pages 1606–1611, 2007.

Wikipedia and CBRS: recent ideas

Soon!

- Wikipedia used for computing the similarity between movie descriptions for the Netflix prize competition [Lees08]
- ESA used for user profiling, spam detection and RSS filtering [Smirnov08]

Wikipedia included in a Knowledge Infusion process for recommendation diversification [Semeraro09a]

[Lees08] J. Lees-Miller, F. Anderson, B. Hoehn, and R. Greiner. Does Wikipedia Information Help Netflix Predictions? *Proceedings of the Seventh International Conference on Machine Learning and Applications (ICMLA)*, pages 337–343. IEEE Computer Society, 2008.

[Smirnov08] A. V. Smirnov and A. Krizhanovsky. Information Filtering based on Wiki Index Database. *CoRR, abs/0804.2354*, 2008.

[Semeraro09a] G. Semeraro, P. Lops, P. Basile, and M. de Gemmis. Knowledge Infusion into Content-based Recommender Systems. In *Proceedings of the 2009 ACM Conference on Recommender Systems, RecSys 2009*, pages 301-304, New York, USA, October 22-25, 2009.

Putting Intelligence into CBRS: Challenges & Research Directions

PROBLEMS	CHALLENGES	RESEARCH DIRECTIONS
Limited Content Analysis	Beyond keywords: novel strategies for the representation of items and profiles	 Semantic analysis of content by means of external knowledge sources Language-independent CBRS
	Taking advantage of Web 2.0 for collecting User Generated Content	Folksonomy-based CBRS
Overspecialization	Defeating homophily: recommendation diversification	 "computational" serendipity -> programming for serendipity Knowledge Infusion

MARS (<u>MultilAnguage Recommender System</u>) cross-language user profiles

WSD for building language-independent user profiles

- MultiWordNet as sense repository MULTI
 - Multilingual lexical database that supports English, Italian, Spanish, Portuguese, Hebrew, Romanian, Latin
 - Alignment between synsets in the different languages
 - Semantic relations imported and preserved

Language	Synset	Gloss
	world, human race, humanity, humankind, human beings, humans, mankind, man	all of the inhabitants of the earth
	mondo, umanità, uomo, genere umano, terra	insieme degli abitanti della terra, il complesso di tutti gli esseri umani

MARS (<u>MultilAnguage Recommender System</u>) cross-language user profiles

MARS (<u>MultilAnguage Recommender System</u>) cross-language user profiles

MARS (<u>MultilAnguage Recommender System</u>) preliminary results

- MovieLens 100k ratings dataset
- 613 users with \geq 20 ratings selected from 943 different users
 - ✓ 520 movies and 40,717 ratings
 - movie content crawled from Wikipedia (English and Italian)
 - same movie different descriptions in English and Italian
- Results in terms of $F_{\beta=0.5}$ measure
 - no statistically significant difference wrt the baselines
- Neither content translations nor profile translations achieve the same effectiveness (they cannot avoid the negative impact of polysemy and lack of context)

Putting Intelligence into CBRS: Challenges & Research Directions

PROBLEMS	CHALLENGES	RESEARCH DIRECTIONS
Limited Content Analysis	Beyond keywords: novel strategies for the representation of items and profiles	 Semantic analysis of content by means of external knowledge sources Language-independent CBRS
	Taking advantage of Web 2.0 for collecting User Generated Content	Folksonomy-based CBRS
Overspecialization	Defeating homophily: recommendation diversification	 "computational" serendipity -> programming for serendipity Knowledge Infusion

Web 2.0 & User-Generated Content (UGC)

Social Tagging & Folksonomies

- Users annotate resources of interests with free keywords, called *tags*
- Social tagging activity builds a bottom-up classification schema, called a *folksonomy*
 - Folksonomy: "Folks" + "Taxonomy"
- How to exploit folksonomies for advanced user profiling in CBRS?

*C*ultural *H*eritage fruition & e-learning applications of new *A*dvanced (multimodal) *T*echnologies

In the context of cultural heritage personalization, does the integration of UGC and textual description of artwork collections cause an increase of the prediction accuracy in the process of recommending artifacts to users?

FIRSt:

<u>F</u>olksonomy-based <u>I</u>tem <u>R</u>ecommender sy<u>St</u>em

- Artwork representation
 - Artist
 - ✓ Title
 - Description
 - ✓ Tags
- Semantic Indexing

- Change of text representation from vectors of words (BOW) into vectors of WordNet synsets (BOS)
- From tags to semantic tags
- Supervised Learning
 - Bayesian Classifier learned from artworks labeled with user ratings and tags

FIRSt (<u>Folksonomy-based Item Recommender syStem</u>) Learning from Ratings & Tags

27) Caravaggio - Deposition from the Cross 🧹

Textual description of items (static content)

Descrizione dell'opera-

The Deposition, considered one of Caravaggio's greatest masterpieces, was commissioned by Girolamo Vittrice for his family chapel in S. Maria in Vallicella (Chiesa Nuova) in Rome. In 1797 it was included in the group of works transferred to Paris is execution of the Treaty of Tolentino. After its return in 1817 it became part of Pius VII's Pinacoteca. Caravaggio did not real portray the Burial or the Deposition in the traditional way, inasmuch as Christ is not shown at the moment when he is laid in the tomb, but rather when, in the presence of the holy women, he is laid by Nicodemus and John on the Anointing Stone, that is stone with which the sepulchre will be closed. Around the body of Christ are the Virgin, Mary Magdalene, John, Nicodemus and Mary of Cleophas, who raises her arms and eyes to heaven in a gesture of high dramatic tension. Caravaggio, who arrive in Rome towards 1592-93, was the protagonist of a real artistic revolution as regards the way of treating subjects and the us of colour and light, and was certainly the most important personage of the "realist" trend of seventeenth century painting.

FIRSt (<u>Folksonomy-based Item Recommender syStem</u>)^{52/89} Tags within User Profiles

27) Caravaggio - Deposition from the Cross

Descrizione dell'opera

[de Gemmis08] M. de Gemmis, P. Lops, G. Semeraro, and P. Basile. Integrating Tags in a Semantic Content-based Recommender. In *RecSys '08, Proceed. of the 2nd ACM Conference on Recommender Systems,* pages 163-170, October 23-25, 2008, Lausanne, Switzerland, ACM, 2008.

The Deposition, considered one of Caravaggio's greatest masterpieces, was commissioned by Girolamo Vittrice for his famil chapel in S. Maria in Vallicella (Chiesa Nuova) in Rome. In 1797 it was included in the group of works transferred to Paris i execution of the Treaty of Tolentino. After its return in 1817 it became part of Pius VII's Pinacoteca. Caravaggio did not rea portray the Burial or the Deposition in the traditional way, inasmuch as Christ is not shown at the moment when he is laid in th tomb, but rather when, in the presence of the holy women, he is laid by Nicodemus and John on the Anointing Stone, that is stone with which the sepulchre will be closed. Around the body of Christ are the Virgin, Mary Magdalene, John, Nicodemus and Mary of Cleophas, who raises her arms and eyes to heaven in a gesture of high dramatic tension. Caravaggio, who arrive in Rome towards 1592-93, was the protagonist of a real artistic revolution as regards the way of treating subjects and the us of colour and light, and was certainly the most important personage of the "realist" trend of seventeenth century painting.

Experimental Evaluation

- Goal: Compare predictive accuracy of FIRSt when user profiles are learned from:
 - Static content only, i.e., textual descriptions of artifacts (content-based profiles)
 - both Static and Dynamic UGC (tag-based profiles).
 UGC can be:
 - Personal Tags, entered by a user for an artifact, i.e., the user's contribution to the whole folksonomy
 - Social Tags, i.e., the whole folksonomy of tags added by all visitors

Experimental Setup

Dataset

- 45 paintings from the Vatican picture-gallery
- Static content (i.e., title, artist and description) captured using screenscraping bots

Subjects

- 30 volunteers
- **2** average age ≈ 25
- **3** none reported to be an art expert

Experimental Design

- 5 experiments designed
 - ✓ EXP#1: Static Content
 - ✓ EXP#2: Personal Tags
 - ✓ EXP#3: Social Tags
 - EXP#4: Static Content + Personal Tags
 - EXP#5: Static Content + Social Tags
- 5-fold cross validation
- Evaluation Metrics: Precision (Pr), Recall (Re), F1 measure

- One run for each user:
 - 1. Select the appropriate content depending on the experiment
 - 2. Split the selected data into a training set *Tr* and a test set *Ts*
 - 3. Use *Tr* for learning the corresponding user profile
 - 4. Evaluate the predictive accuracy of the induced profile on *Ts*

Analysis of Precision

nt-based ofiles	Type of Content	Precision*	Recall*	F1*
Contel	EXP#1: Static Content	75.86	94.27	84.07
Tag-based C Profiles	EXP#2: Personal Tags	75.96	92.65	83.48
	EXP#3: Social Tags	75.59	90.50	82.37
nted es	EXP#4: Static Content + Personal Tags	78.04	93.60	85.11
ugmen Profile	EXP#5: Static Content + Social Tags	78.01	93.19	84.93

* Results averaged over the 30 study subjects

Analysis of Precision

nt-based ofiles	Type of Content	Precision*	Recall*	F1*
Conte	EXP#1: Static Content	75.86	94.27	84.07
ased iles	EXP#2: Personal Tags	75.96	92.65	83.48
Tag-ba Profi	EXP#3: Social Tags	75.59	90.50	82.37
ugmented Profiles	EXP#4: Static Content + Personal Tags	78.04	93.60	85.11
	EXP#5: Static Content + Social Tags	78.01	93.19	84.93
∀ * R(esults averaged over the 30 study subjects	Tag Preci	vs CB sion not	57

improved

Analysis of Precision

nt-based ofiles	Type of Content	Precision*	Recall*	F1*
Conte	EXP#1: Static Content	75.86	94.27	84.07
Tag-based C Profiles	EXP#2: Personal Tags	75.96	92.65	83.48
	EXP#3: Social Tags	75.59	90.50	82.37
nted es	EXP#4: Static Content + Personal Tags	78.04	93.60	85.11
ugmer Profile	EXP#5: Static Content + Social Tags	78.01	93.19	84.93
Ā				

* Results averaged over the 30 study subjects

Augmented vs CB Precision Improvement ≈ 2⁵⁸

Analysis of Recall

nt-based ofiles	Type of Content	Precision*	Recall*	F1*
Conte	EXP#1: Static Content	75.86	94.27	84.07
ased (iles	EXP#2: Personal Tags	75.96	92.65	83.48
Tag-ba Profi	EXP#3: Social Tags	75.59	90.50	82.37
ugmented Profiles	EXP#4: Static Content + Personal Tags	78.04	93.60	85.11
	EXP#5: Static Content + Social Tags	78.01	93.19	84.93
¥ Re	sults averaged over the 30 study subjects	Red 1.0	Tag vs CB call decrea 62% – 3.77	ase ₅₉ '%

Analysis of Recall

nt-based files	Type of Content	Precision*	Recall*	F1*
Conte	EXP#1: Static Content	75.86	94.27	84.07
ased (les	EXP#2: Personal Tags	75.96	92.65	83.48
Tag-b Profi	EXP#3: Social Tags	75.59	90.50	82.37
ugmented Profiles	EXP#4: Static Content + Personal Tags	78.04	93.60	85.11
	EXP#5: Static Content + Social Tags	78.01	93.19	84.93
* Re	sults averaged over the 30 study subjects	ugmented v Recall decrea 0.67% – 1.08	s CB ase: 8%	60

Analysis of F1

nt-based ofiles	Type of Content	Precision*	Recall*	F1*
Conte	EXP#1: Static Content	75.86	94.27	84.07
ased iles	EXP#2: Personal Tags	75.96	92.65	83.48
Tag-b Prof	EXP#3: Social Tags	75.59	90.50	82.37
nted es	EXP#4: Static Content + Personal Tags	78.04	93.60	85.11
ugmer Profile	EXP#5: Static Content + Social Tags	78.01	93.19	84.93
Ā	~			/

* Results averaged over the 30 study subjects

Overall accuracy F1 ≈ 85%

Putting Intelligence into CBRS: Challenges & Research Directions

PROBLEMS	CHALLENGES	RESEARCH DIRECTIONS
Limited Content Analysis	Beyond keywords: novel strategies for the representation of items and profiles	 Semantic analysis of content by means of external knowledge sources Language-independent CBRS
	Taking advantage of Web 2.0 for collecting User Generated Content	Folksonomy-based CBRS
Overspecialization	Defeating homophily: recommendation diversification	 "computational" serendipity -> programming for serendipity Knowledge Infusion

Serendipity: Definitions

- Serendipity
 - Making discoveries, by accidents and sagacity, of things which one were not in quest of (Horace Walpole, 1754)
 - The art of making an unsought finding (Pek van Andel, 1994) [vanAndel94]
- Serendipitous ideas and findings
 - Gelignite by Alfred Nobel, when he accidentally mixed collodium (gun cotton) with nitroglycerin
 - Penicillin by Alexander Fleming
 - The psychedelic effects of LSD by Albert Hofmann
 - Cellophane by Jacques Brandenberger
 - The structure of benzene by Friedric August Kekulé

[vanAndel94] van Andel, P. Anatomy of the Unsought Finding. Serendipity: Origin, History, Domains, Traditions, Appearances, Patterns and Programmability. *The British Journal for the Philosophy of Science*, 45(2): 631-648, 994.

The challenge

- Serendipity in RSs is the experience of receiving an unexpected and fortuitous, but useful advice
 - it is a way to diversify recommendations
- The challenge is programming for serendipity
 - to find a manner to introduce serendipity into the recommendation process in an operational way

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO,"

Strategies for computational serendipity [Toms00]

- "Blind Luck": random recommendations
- Prepared Mind": Pasteur principle ("chance favors the prepared mind") deep user modeling
- Searching for dissimilarity [laquinta10]

Coming Soon!

④ "Reasoning by Analogy" ←

[laquinta10] L. laquinta, M. de Gemmis, P. Lops, G. Semeraro, P. Molino (2010). Can a Recommender System Induce Serendipitous Encounters? In: KYEONG KANG. *E-Commerce*, 229-246, VIENNA: IN-TECH, 2010.

[Toms00] Toms, E. Serendipitous Information Retrieval. In *Proceedings of the First DELOS Network of Excellence Workshop on Information Seeking, Searching and Querying in Digital Libraries*, Zurich, Switzerland: European Research Consortium for Informatics and Mathematics, 2000.

Programming for Serendipity into CBRS: "Anomalies and Exceptions"

- Basic recommendation list defined by the best N items ranked according to the user profile
- Idea for inducing serendipity
 - extending the basic list with items programmatically supposed to be serendipitous for the active user

ITem Recommender (ITR)

- Content-based recommender developed at Univ. of Bari [Semeraro07]
 - learns a probabilistic model of the interests of the user from textual descriptions of items
 - user profile = binary text classifier able to categorize items as interesting (LIKES) or not (DISLIKES)
 - a-posteriori probabilities as classification scores for LIKES and DISLIKES

[Semeraro07] G. Semeraro, M. Degemmis, P. Lops, and P. Basile. Combining Learning and Word Sense Disambiguation for Intelligent User Profiling. In M. M. Veloso, editor, *IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, January 6-12, 2007*, pages 2856–2861, Morgan Kaufmann, 2007.

Recommendation process: Ranked list approach

68/89

0.22

Programming for Serendipity into ITR: strategy

- Potentially serendipitous items selected on the ground of categorization scores for LIKES and DISLIKES
 - ✓ difference of classification scores tends to zero → uncertain classification
 | P(LIKES | ITEM) – P(DISLIKES | ITEM) | ≈ 0
 - $| \mathsf{P}(\mathsf{LIKES} | \mathsf{ITEN}) \mathsf{P}(\mathsf{DISLIKES} | \mathsf{IT})$
 - ✓ assumption:

uncertain classification \equiv items not known by the user

Programming for Serendipity into ITR: example

- Basic recommendation list = N most interesting items
- Ranked list of "unpredictable" items obtained from ITR
- Basic recommendation list augmented with some serendipitous items

What about evaluation?

- Classic evaluation metrics (Precision, Recall, F, MAE,...) don't take into account obviousness, novelty and serendipity
 - ✓ Accurate recommendation ≠ Useful recommendation
 - emotional response associated with serendipity difficult to capture by conventional accuracy metrics
 - serendipity degree impossible to evaluate without considering user feedback
- 2 Novel metrics required
 - planned as a future work

Programming for Serendipity:

cross-domain recommendations

Customers buy this item with The Shawshank Redemption [DVD] [1995]

Price For Both: £7.75

Add both to Basket

"Reasoning by Analogy": a serendipity strategy for cross-domain recommendations

73/89

Ongoing work: DEVIUS

Analogy engine for computing "parallel" user profiles

- Spreading activation on DBpedia for mapping between domains
- Open source code of DEVIUS available in September
- Sector 2 Sector 2
 - books / movies

Putting Intelligence into CBRS: Challenges & Research Directions

PROBLEMS	CHALLENGES	RESEARCH DIRECTIONS
Limited Content Analysis	Beyond keywords: novel strategies for the representation of items and profiles	 Semantic analysis of content by means of external knowledge sources Language-independent CBRS
	Taking advantage of Web 2.0 for collecting User Generated Content	Folksonomy-based CBRS
Overspecialization	Defeating homophily: recommendation diversification	 "computational" serendipity -> programming for serendipity Knowledge Infusion

Knowledge Infusion (KI)

- Humans typically have the *linguistic* and *cultural* experience to comprehend the meaning of a text
 ✓ How to realize this *capability* into machines?
- In NLP tasks, computers require access to vast amounts of common-sense and domain-specific world knowledge
 - ✓ Infusing lexical knowledge → Dictionaries (e.g. WordNet)
 - ✓ Infusing cultural knowledge → Wikipedia

✓ …

Enhancing CBRS by KI

- Modeling the unstructured information stored in several (open) knowledge sources
- Exploiting the acquired knowledge in order to better understand the item descriptions and extract more meaningful features
- Inspired by a language game: The Guillotine [Semeraro09b]

[Semeraro09b] G. Semeraro, P. Lops, P. Basile, and M. de Gemmis. On the Tip of my Thought: Playing the Guillotine Game. In *Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009)*, 1543-1548, Morgan Kaufmann, 2009.

The Guillotine: the game

[Lops09] P. Lops, P. Basile, M. de Gemmis and G. Semeraro. "Language Is the Skin of My Thought": Integrating Wikipedia and AI to Support a Guillotine Player. In: R. Serra, R. Cucchiara (Eds.), *AI*IA 2009: Emergent Perspectives in Artificial Intelligence*, XIth International Conference of the Italian Association for Artificial Intelligence, Reggio Emilia, Italy, December 9-12, 2009. LNCS 5883, 324-333, Springer 2009.

Let's try to play the game

APPLE	"An apple a <u>day</u> takes the doctor away"
JUDGMENT	<mark>Day</mark> of Judgment
SUNRISE	Beginning of the <u>day</u>
INDEPENDENCE	Independence <u>day</u>
SLEEPER	Daysleeper, a famous song by R.E.M.

What does OTTHO know about 'stars'?

KI@work for recommendation diversification

Concluding Remarks

Research directions for overcoming some CBRS drawbacks

- main strategies adopted to introduce some semantics in the recommendation process
- main strategies for diversifying recommendations
- Research agenda: glean meaning and user thought from the precious boxes (brain, Web, social networks,...) they are hidden into:
 - fMRI & Eye/Head-tracking technologies for a new generation of evaluation metrics
 - Linked Open Data: interlinking user profiles with Semantic Web data and LOD
 - Semantic Cross-system Personalization: semantic matching of user profiles coming from heterogeneous systems

Thanks...

... for your attention...

...Questions?

Semantic Web Access and Personalization research group http://www.di.uniba.it/~swap Pierpaolo Basile Marco de Gemmis Leo laquinta Piero Molino Fedelucio Narducci Eufemia Tinelli Annalina Caputo Michele Filannino Pasquale Lops Cataldo Musto Giovanni Semeraro

Credits

+ Arundhati Roy

+ The librarian

+ Stefano Bartezzaghi "Accavallavacca"

+ "A Logic Named Joe"

+ Umberto Eco

lvonne **Bordelois**

+ Milena Jole Gabanelli

- Gaetano Bassolino & Emanuele Vizzini

References 1/4

- [Aciar07] S. Aciar, D. Zhang, S. Simoff, and J. Debenham. Informed Recommender: Basing Recommendations on Consumer Product Reviews. *IEEE Intelligent Systems*, 22(3):39–47, 2007.
- [Basile07] P. Basile, M. Degemmis, A. Gentile, P. Lops, and G. Semeraro. UNIBA: JIGSAW algorithm for Word Sense Disambiguation. In Proc.4th ACL 2007 International Workshop on Semantic Evaluations (SemEval-2007), Prague, Czech Republic, 398-401, Association for Computational Linguistics, June 23-24, 2007.
- [BlancoFernandez08] Y. Blanco-Fernandez, A. Gil-Solla, J. J. Pazos-Arias, M. Ramos-Cabrer, and M. Lopez-Nores. Providing Entertainment by Content-based Filtering and Semantic Reasoning in Intelligent Recommender Systems. *IEEE Trans. on Consumer Electronics*, 54(2):727-735, 2008.
- [Cantador08] I. Cantador, A. Bellog´ın, and P. Castells. News@hand: A Semantic Web Approach to Recommending News. In Wolfgang Nejdl, Judy Kay, Pearl Pu, and Eelco Herderm (Eds.), *Adaptive Hypermedia and Adaptive Web-Based Systems*, LNCS 5149, pages 279–283, Springer, 2008.
- [Degemmis07] M. Degemmis, P. Lops, and G. Semeraro. A Content-collaborative Recommender that Exploits WordNet-based User Profiles for Neighborhood Formation. *User Modeling and User-Adapted Interaction: The Journal of Personalization Research (UMUAI)*, 17(3):217–255, Springer Science + Business Media B.V., 2007.
- [de Gemmis08] M. de Gemmis, P. Lops, G. Semeraro, and P. Basile. Integrating Tags in a Semantic Content-based Recommender. In *RecSys '08, Proc. of the 2nd ACM Conference on Recommender Systems,* pages 163–170, October 23-25, 2008, Lausanne, Switzerland, ACM, 2008.

[Eco07] U. Eco, Sator arepo eccetera. Bompiani, 2007 (in Italian).

References 2/4

- [Egozi09] O. Egozi. *Concept-Based Information Retrieval using Explicit Semantic Analysis*. M.Sc. Thesis, CS Department, Technion, 2009.
- [Eirinaki03] LM. Eirinaki, M. Vazirgiannis, and I. Varlamis. SEWeP: Using Site Semantics and a Taxonomy to Enhance the Web Personalization Process. In *Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pages 99-108, ACM, 2003.
- [Gabri06] E. Gabrilovich and S. Markovitch. Overcoming the Brittleness Bottleneck using Wikipedia: Enhancing Text Categorization with Encyclopedic Knowledge. In Proceed. of the 21th National Conf. on Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conf., pages 1301–1306, AAAI Press, 2006.
- [Gabri07] E. Gabrilovich and S. Markovitch. Computing Semantic Relatedness Using Wikipedia-based Explicit Semantic Analysis. In Manuela M. Veloso, editor, *Proceedings of the 20th International Joint Conference on Artificial Intelligence*, pages 1606–1611, 2007.

[Giles05] J. Giles. Internet Encyclopaedias Go Head to Head. Nature, 438:900-901, 2005.

- [Herlocker04] Herlocker, J.L., Konstan, J.A., Terveen, L.G., and Riedl, J.T. Evaluating Collaborative Filtering Recommender Systems. *ACM Transactions on Information Systems*, 22(1): 39-49, 2004.
- [laquinta10] L. laquinta, M. de Gemmis, P. Lops, G. Semeraro, P. Molino (2010). Can a Recommender System Induce Serendipitous Encounters? In: KYEONG KANG. *E-Commerce*, 229-246, VIENNA: IN-TECH, 2010.
- [Lees08] J. Lees-Miller, F. Anderson, B. Hoehn, and R. Greiner. Does Wikipedia Information Help Netflix Predictions? *Proceedings of the Seventh International Conference on Machine Learning and Applications (ICMLA*), pages 337–343, IEEE Computer Society, 2008.

References 3/4

- [Lops09] P. Lops, P. Basile, M. de Gemmis and G. Semeraro. "Language Is the Skin of My Thought": Integrating Wikipedia and AI to Support a Guillotine Player. In: R. Serra, R. Cucchiara (Eds.), *AI*IA* 2009: Emergent Perspectives in Artificial Intelligence, XIth International Conference of the Italian Association for Artificial Intelligence, Reggio Emilia, Italy, December 9-12, 2009. LNCS 5883, 324-333, Springer 2009.
- [Lops10] P. Lops, M. de Gemmis, G. Semeraro. Content-based Recommender Systems: State of the Art and Trends. In: P. Kantor, F. Ricci, L. Rokach and B. Shapira, editors, *Recommender Systems Handbook: A Complete Guide for Research Scientists & Practitioners*, Chapter 3, pages 73-105, BERLIN: Springer, 2010.
- [McNee06] S.M. McNee, J. Riedl, and J. Konstan. Accurate is not always good: How accuracy metrics have hurt recommender systems. In *Extended Abstracts of the 2006 ACM Conference on Human Factors in Computing Systems*, pages 1-5, Canada, 2006.
- [Middleton04] S. E. Middleton, N. R. Shadbolt, and D. C. De Roure. Ontological User Profiling in Recommender Systems. ACM Transactions on Information Systems, 22(1):54-88, 2004.
- [Pazzani07] Pazzani, M. J., & Billsus, D. Content-Based Recommendation Systems. *The Adaptive Web*. Lecture Notes in Computer Science vol. 4321, 325-341, 2007.
- [Pedersen04] Pedersen, Ted and Patwardhan, Siddharth, and Michelizzi, Jason. WordNet::Similarity -Measuring the Relatedness of Concepts. In *Proceedings of the Nineteenth National Conference* on Artificial Intelligence (AAAI-2004), pp. 1024-1025, San Jose, CA, July, 2004.
- [Semeraro07] G. Semeraro, M. Degemmis, P. Lops, and P. Basile. Combining Learning and Word Sense Disambiguation for Intelligent User Profiling. In M. M. Veloso, editor, *IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, January 6-12, 2007*, pages 2856–2861, Morgan Kaufmann, 2007.

References 4/4

- [Semeraro09a] G. Semeraro, P. Lops, P. Basile, and M. de Gemmis. Knowledge Infusion into Content-based Recommender Systems. In *Proceedings of the 2009 ACM Conf. on Recommender Systems, RecSys 2009*, pages 301-304, New York, USA, October 22-25, 2009.
- [Semeraro09b] G. Semeraro, P. Lops, P. Basile, and M. de Gemmis. On the Tip of my Thought: Playing the Guillotine Game. In *Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009)*, 1543-1548, Morgan Kaufmann, 2009.
- [Smirnov08] A. V. Smirnov and A. Krizhanovsky. Information Filtering based on Wiki Index Database. *CoRR, abs/0804.2354*, 2008.
- [Toms00] Toms, E. Serendipitous Information Retrieval. In *Proceedings of the First DELOS Network of Excellence Workshop on Information Seeking, Searching and Querying in Digital Libraries*, Zurich, Switzerland: European Research Consortium for Informatics and Mathematics, 2000.
- [vanAndel94] van Andel, P. Anatomy of the Unsought Finding. Serendipity: Origin, History, Domains, Traditions, Appearances, Patterns and Programmability. *The British Journal for the Philosophy of Science*, 45(2), pp. 631-648, 1994.
- [Zuckerman08] E. Zuckerman. Homophily, serendipity, xenophilia. April 25, 2008. www.ethanzuckerman.com/blog/2008/04/25/homophily-serendipity-xenophilia/