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Abstract

Product configuration systems play an important
role in the development of Mass Customisation.
The configuration of complex product families may
nowadays involve multiple design disciplines, e.g.
hardware, software and services. In this paper, we
present a conceptual approach for modelling the
variability in such heterogeneous product families.
Our approach is based on a framework that aims
to cater for the different stakeholders involved in
the modelling and management of the product fam-
ily. The modelling approach is centred around the
concepts of views, types and constraints and is illus-
trated by a motivation example. Furthermore, as a
proof of concept, a prototype has been implemented
for configuring a non-trivial heterogeneous product
family.

1 Introduction
In many companies, there has been an increasing need to
reduce the costs while offering highly customised products.
Indeed, today’s customers demand products with lower prices,
higher quality and faster delivery, but they also want products
customised to match their unique needs. Product configuration
systems (or configurators) have allowed the manufacturers to
adapt their business model to Mass Customisation [Pine, 1993]
and propose products with hundreds of product features and
options for a competitive price.

Model-based configuration is based on a strict separation
between the product knowledge (i.e. the data representing the
characteristics of the products) and the problem solving knowl-
edge (i.e. the mechanisms used to ensure the consistency of
the customised product). As the solving process is indepen-
dent from the product knowledge, this separation provides
a good robustness, compositionality and reusability, making
model-based systems the prime choice for configuring large
and more complex models [Sabin and Weigel, 1998].

Most of the research on product knowledge modelling has
concentrated on manufactured product families [Hvam et al.,
2008]. Moreover, configuration techniques have recently been
applied to other types of products, such as software variability
[Asikainen et al., 2007] or configurable services [Heiskala et

al., 2005]. However, many products nowadays are heteroge-
neous, i.e. different design disciplines are taken into account
within the same product family. Modelling such products
raises two main issues. One must first consider how to struc-
ture the different kind of knowledge that needs to be modelled.
A second issue concerns the evolution of the product fam-
ily. The set of features provided by a product family varies
according to where and when it is distributed.

In this paper, we present a framework for modelling hetero-
geneous product families, based on modelling views. This
framework synthesizes, unifies and extends different ap-
proaches to modelling configuration in the different design
disciplines, e.g. physical products, software or services. The
different views used in the approach are described using UML
metamodels, together with different types of constraints that
govern the dependencies both within and between views.

Section 2 and Section 3 introduce the necessary background
and the research problem behind our approach. Section 4, 5
and Section 6 present concepts and constraints involved in our
framework. Section 7 provides a brief overview of the proof
of concept for our work, while Section 8 discusses our results
and related work. Finally, Section 9 concludes the paper.

2 Background and Previous Work
This section provides a brief overview of different research
areas on which this work is based.

2.1 Product Configuration
Product configuration modelling is widely based on concepts
such as components, ports, resources and functions [Soini-
nen et al., 1998]. A configurable product is composed by
components that are connected together via ports to form a
hierarchical partonomy structure. Specialisation relations also
permits to create a taxonomy structure in the model. Resources
are balanced entities that can be produced or consumed by
components, while functions can be used to define the prod-
uct from the point of view of what functionalities it provides.
The model also contains constraints that limit the number of
possible variants, e.g. by restricting the combinations of val-
ues allowed for the different attributes of the product. The
traditional method for modelling products is the type-instance
approach: the model defines a number of types, that are then
instantiated as individuals during the configuration process to
store the final data.



Several high-level modelling languages tailored for product
configuration have been proposed, including PCML [Tiihonen
et al., 2002]. Other languages such as UML have also been
studied for modelling product configuration [Felfernig et al.,
2002; Hvam et al., 2008]. Finally, product configuration has
also been successful in industry [Haag, 1998].

2.2 Software Product Lines
Software product lines (SPL), also known as software product
families, is a set of software systems sharing a common set of
features that “satisfy the specific needs of a particular market
segment or mission and that are developed from a common set
of core assets in a prescribed way” [Clements and Northrop,
2001].

Some approaches consider software product lines from an
architectural point of view. Architecture description languages
(ADLs) have been proposed to describe the SPLs in terms
of their structure, including their components, interfaces, or
communication protocols; but few can handle variability in
SPLs. A few exceptions exist: Koalish [Asikainen et al., 2003]
for example extends Koala, an ADL based on components and
interfaces, by adding variability elements such as attribute
domains and constraints.

A more common method to model SPL is using features.
Feature modelling approaches are based on the concept of
features, that usually represent the visible characteristics of
the system, from an end-user point of view. Well-known fea-
ture modelling methods, such as FODA (Feature Oriented
Domain Analysis) [Kang et al., 1990] or FORM (Feature Ori-
ented Reuse Method) [Kang et al., 1998] use a feature model,
which represents a feature tree using different relations be-
tween features and subfeatures, including mandatory, optional
or alternative relations. Feature models have been extended to
support shared subfeatures, feature attributes and cardinalities
or feature groups [Czarnecki et al., 2005b].

Finally, Asikainen et al. [2007] recently proposed Kumbang.
Kumbang combines advanced feature modelling concepts with
the approach from Koalish, and adds support for advanced
constraint relations compared to traditional feature modelling
approaches.

2.3 Service Configuration
Configurable services represent services that can be cus-
tomised from a set of pre-defined options, in order to fit the
needs of individual customers. Research on configurable ser-
vices and how to model them is a relatively recent topic: sev-
eral authors have been discussing the configuration of different
types of services, e.g. IT services [Böhmann et al., 2003].

Other researchers [Akkermans et al., 2004; Heiskala et al.,
2005] propose more detailed conceptualisations for modelling
services. The most similar to our work, Heiskala et al. [2005],
presents a conceptual model following a type/instance ap-
proach using four viewpoints, called worlds: the needs world,
representing the customer’s needs; the service solutions world,
for the service’s specifications; the process world, related to
the service delivery; and finally the object-of-services world,
that is used to describe the service recipient and the environ-
ment in which the service will be supplied.

3 Research Problem
In this section, we define the Research Problem motivating our
work, and describe the example that illustrates our approach.

The Research Problem considered in this paper is: how
to uniformly support the configuration and management of
heterogeneous product families? What we refer to as a het-
erogeneous product family is a family of products integrating
separate design disciplines interacting with each others. In the
rest of the paper, we refer to these design disciplines as the
dimensions of such a product family.

Modelling variability in heterogeneous product families
yields various issues, due to the diversity of the product knowl-
edge necessary to address these different dimensions. Indeed,
the model of a heterogeneous product family can be very com-
plex, and involves several types of users with different skills
and objectives, making the need for uniformity of prime impor-
tance. The different dimensions in such a product family are
rarely independent, and it is primordial to take the interactions
between dimensions into account.

With this, we specify the main research problem in more
detail with the following Research Questions:

RQ1 What are the needs of the users of the model to be sup-
ported?

RQ2 What modelling constructs support addressing the het-
erogeneity?

RQ3 How to integrate together the different dimensions of
heterogeneity in the models?

RQ4 How to support the management of such product family
over time and for different market situations?

As a motivation example, we present in Figure 1 a sim-
plified version of a product family consisting of netbooks,
smartphones and tablet computers. The example represents a
configurable family of products consisting of: a set of physical
elements (a motherboard with hardware chips, a screen, ...);
the configurable software running on the devices (applications,
libraries, ...); and the services associated with the devices
(subscriptions, synchronisation services, ...).

This running example illustrates how complex the mod-
elling of a heterogeneous product family can be. Indeed, the
engineers responsible for modelling the variability in the phys-
ical parts of the system often possess a knowledge different
from the ones responsible for managing the software configu-
ration model, or creating the service model. As can be seen
in the previous section, although the modelling approaches
often use the same basis (types, partonomy, etc.), the high-
level concepts behind each type of modelling are different,
and thus require different mindsets. One can then assume that
the task of managing the variability of the hardware, software
and service parts for large products is delegated to separate
groups of knowledge engineers.

Configuring such a product family can be quite complex,
due to the amount of technical details represented in each
different aspects of the products. Those details are often not
very accessible to salespersons and end-customers, who prefer
viewing the features (or functions) of the product families, as
described in [Soininen et al., 1998]. Defining the feature set
of the product family may be enough in some cases.
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Figure 1: Running example. The product family represents
mobile devices and is configured according to three dimen-
sions, hardware, software and services, and need to be adapted
to different scenarios, e.g. tailored to distributors and markets.

However, we identified several scenarios that illustrate dif-
ferent situations where this feature set may need refinement:

• Market differentiation: The company selling the products
proposes different feature sets for different markets. In
our example, different markets, e.g. Europe and United
States, means different data signals to be handled by the
phones, as well as different regulations. The possible
combinations of features may just be restricted on those
different markets.

• Feature set evolution: The product family’s feature set is
evolving with time. Devices may not arrive fully featured
on the market, due to time constraints or strategic deci-
sions. A refined feature set may be needed for a specific
time, with additional constraints that may disappear (or
be modified) in future evolution of the product family.

• Distributors tailoring: The producing company is dis-
tributing the products to different intermediary vendors.
Products as our example may not be distributed directly
by the manufacturer. This producer may propose a fea-
ture set to vendors that can adapt it in order to forbid
specific combinations, or to create a more simple feature
set for the end-customer. For example, the example prod-
ucts may be sold by distributors by letting the customer
choose between different feature packages, limiting the
choices in configuration.

• Market analysis: The final customers can also be con-
sidered first (instead of the product family). A market
study identifies the different needs of the final customers
(or needs that the company wants to introduce in the
market) and build different feature sets to satisfy these
needs, aiming at creating a product family to fit those.
On the contrary to the first three scenarios, this scenario
considers the market needs as the basis for designing the
product family.

These scenarios provide a more concrete characterisation
of how the functionalities of the product family may need to
evolve depending on its use and distribution, as introduced in
Research Question 4.

4 Modelling Framework
Our approach is based on the concept of modelling views.
Those views are used to model different aspects of the product
family, according to the different roles of the modellers. The
main assumption is that each product family considered con-
sists of different dimensions, and that all those parts need (and
benefit from) configuration. Models are created and main-
tained by knowledge engineers from various informations
given by domain experts. However, heterogeneous product
families with multiple dimensions may require different kind
of domain experts with different roles and sets of skills, accord-
ing to the degree of technicality or the dimension considered.

In this section, we thus define three different types of views:
the feature views, the structure views and the realisation views,
depending on their intended audience and how they contribute
to the model of the product family through different levels of
abstraction. The views are characterised by a set of concepts
with a specific organisation. Most of the concepts presented
here are not new in themselves, but how they interact between
each others within and between views is of importance.

4.1 Feature Views
Feature views provide a view of a product family from a high
level of abstraction. These views are targeted at sales persons
or end-customers that need to have an understanding of what
the product individuals can do, instead of how they can do it.
In our conceptual approach, feature views are not separated
according to the different dimensions of the product family.
The relations between the concepts described in feature views
are related to the product individuals as a whole, and as such
should not be dimension-specific. Product individuals can
indeed be characterised by the features (or functions) they
provide, independently from the way they are structured.

A feature view is composed of feature types, organise in
partonomy (subfeatures) and taxonomy (subtypes) structures,
as shown in the UML metamodel in Figure 2(a). Variability is
defined in each feature type using attributes that can take dif-
ferent values. A feature subtype inherits all the properties of its
supertype, i.e. its attributes, subfeatures, and constraints. Two
types of constraints can be added to each type. Compatibility
constraints model dependencies between the feature view, i.e.
it specifies conditions that must hold in a valid configuration.
Implementation constraints model the dependencies between
different types of views, and will be detailed in Section 5.

Example: Consider our motivation scenario (Figure 3).
Feature types such as Input or Localisation can be used to
define the input type (touch input, keyboard features) or if
GPS localisation should be available on the device.

4.2 Structure Views
Feature views are implemented by structure views, which de-
fine the different design components that realise the described
features of the product family, and the relations between them.
Structure-based approaches for configuration are widely used
[Soininen et al., 1998], as the compositional structure of the
product families is often used to represent the product data
knowledge. The structure views communicate the aspects of
the architecture of interest to those involved in designing the
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Figure 2: UML metamodels for: (a) Feature views (b) Structure views (c) Realisation views

system. They provide more concrete models of a product fam-
ily, as it represents the specifications of the components of the
system. Structure views are thus mainly aimed at design or
maintenance and are for example targeted at product design
engineers, software architects or service contractors.

A structure view is composed of structure types, that can
be either component types or association types. As for feature
views, structure views are organised in partonomy and taxon-
omy structures (Figure 2(b)). Types can have attributes and
compatibility constraints as well.

The different concepts used in structure views have a spe-
cific meaning according to which dimension each view refers
to. For example, a physical structure view represents the
physical structure of the product family. Component types
are entities whose individuals are physical components in-
volved in the physical design, while association types are used
to model non-directional physical links between two compo-
nents. A software structure view describes the architecture of
the software system involved in the product family. Instances
of component types represent software components, and as-
sociation can be defined to model interfaces, whether they
provide software functions or require some. Also, a service
structure view describes the specifications of the service to be
delivered. Component types are service element types, and de-
scribes contractual agreements of what to be delivered, similar
to what is modelled in the service solutions world of Heiskala
et al. [2005].

Example: In our motivation scenario (Figure 3), the physi-
cal structure view contains a Screen and a TouchScreen com-
ponent types with a size attribute, while the software view
handles the User Experience (UX) framework and software
interfaces to the Middleware libraries. The service structure
view declares RepairCoverage or PhoneSubscription as types.

4.3 Realisation Views
Realisation views offer a detailed technical view of how the
product individuals are realised. Compared to structure views,
whose purpose is to represent the design of a specific dimen-
sion of the product family, realisation views are aimed at
describing the elements necessary for the concrete realisation
of the system for that dimension. They are thus targeted at
highly specialised engineers, e.g. product engineers, software
developers or service deliverers, and represent the lowest ab-
straction level in our conceptual modelling framework. Each
realisation view is associated with a dimension, which defines
its proper meaning: physical products use this view to repre-
sent manufacturing data, while software involve the solution
deployment, and services the delivery process.

The building blocks of a realisation view are realisation
types. There are three possible realisation types: item types,
operation types and resource types. Item types represent the
production components used to realise the products. It can
be a BOM item for manufactured parts, a software package
when dealing with software, or an object to be produced when
delivering a service (e.g. a contract or a bill). Operation
types are used to specify a set of operations needed during
the production of individuals (e.g. manufacturing operations,
software deployment, service processes). Resource types may
describe a machine, an operator, an information or anything
that may be necessary to complete the operations.

Contrary to structure views, realisation views are not start-
ing with a single root type. Instead, each realisation view is
associated with a structure view (from the same dimension),
and each item or operation type may be associated to a relevant
structure type via a mapping constraint. Types mapped to a
structure type defines their own tree of subitems, providing a
more detailed breakdown of the production components.
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Figure 3: Overview of the motivation example model and the different modelling views, depending on the three dimensions
(physical, software and services). Partonomy relations are shown using UML Aggregations, taxonomy relations using UML
Generalizations. For the sake of brevity, only a subset of the types and the base feature view in the hierarchy are shown.

Example: The Screen component type in the physical struc-
ture view of our motivation example can be mapped to differ-
ent manufacturing items. A specific mapping can be made if
TouchScreen is chosen instead, or when a specific configura-
tion is made (e.g. changing the value of the size attribute).

5 Dependencies and Constraints
Constraints can be used to specify dependencies within or
between views when other modelling mechanisms are not suf-
ficient to capture them. Constraints are written in a constraint
language, and involve types attributes and predicates using
pre-defined functions, such as Count(...) that returns the actual
cardinality in a partonomy relation. The full description of the
constraint language is out of the scope of this paper.

5.1 Compatibility Constraints
A compatibility constraint is specific to a particular view, and
can only involve properties of this view. The evaluation of
a constraint occurs during configuration, when types are in-
stantiated to individuals. Each instance of the context type in
which the constraint is declared must satisfy it.

Example: The following constraint, declared in the Input
component type, specifies that the physical keyboard feature
must be selected if one wants a backlit keyboard:

backlitKeys ⇒ keyboard

Constraints may also contain references to properties
that are not always present in the product individual being
configured, e.g. if a constraint accesses a subpart whose

cardinality is not fixed, or an attribute from a subtype that
may not be chosen (the property is said inactive). Each
compatibility constraint containing at least one inactive term
is evaluated to true during configuration.

5.2 Implementation Constraints
Implementation constraints are essential to our framework, as
they model the interaction between the base feature view and
the structure views (and in the feature views hierarchy, see
Section 6). They are composed of a left-hand side expression
L and a right-hand side expression R, related by an implication
or an equivalence operator. The expression L represents the
features to be implemented by the constraint, in a similar way
as in the compatibility constraints. On the other hand, the
expression R represents what is needed in the stucture view(s)
to implement the features specified by L.

Example: Consider the following constraint in the Input
feature type from the base feature view:
touchInput = “multitouch′′ ⇔

(Physical :: TouchScreen.type = “capacitive′′

∧ Software :: HandsetUX.touchFrmk = true)

This implementation constraint specifies that a device has a
multitouch input if there exists a capacitive touchscreen and
a touch framework is implemented in the software. Exis-
tential quantifiers are implicitly used in the semantics of the
expression R, as the feature may exist if there is at least one
combination of structural elements implementing it. Universal
quantifiers can also be explicitly used in some specific cases.



5.3 Mapping Constraints
Mapping constraints are defined in realisation views to specify
under which conditions a realisation type should be included
in the configuration results. There exists indeed a mapping
between structure types and item and operation types, and the
latters should only be part of the final configuration if certain
conditions are met. Mapping constraints are declared in item
and operation types, and refers to attributes from the structural
type defined as context.

Example: The following mapping constraint is declared
in the Coating operation type and takes as context the Touch-
Screen component type from the physical structure view:
cmap(TouchScreen,Coating) : oleophobicCoating = true

A valid configuration thus ensures that the latter constraint is
true for each instance of the TouchScreen type, i.e. an instance
of the Coating operation type is present for each instance of
TouchScreen where the attribute oleophobicCoating is true.

6 Feature View Hierarchy
To address the management and evolution of the product fam-
ily (Research Question 4) and the scenarios discussed in the
Section 3, several feature views can be defined and organised
in a feature view hierarchy. A model defines a base feature
view, which will contain all the features available for the mod-
elled product family, and should be implemented by the struc-
tural views. This base feature view may then be specialised,
as different versions or evolutions of the product family may
require special restrictions to the set of available features (Mar-
ket differentiation and Feature set evolution scenarios), or even
more abstract feature views in order to be presented to final
customers (Distributors tailoring and Market analysis).

The feature view hierarchy defines a specialisation tree,
rooted by the base feature view. A feature view F ′ is the child
of another feature view F if F ′ is a specialisation of F . This
specialisation is done through different concepts:
• Implementation: A feature view F ′ can declare new

feature types and attributes, for example to define more
abstract feature groups and properties. As for the base
feature view, the types in F ′ must use implementation
constraints to associate their properties to the feature
view F , parent of F ′.
• Refinement and reference: Apart from defining new

feature types, feature views can refine feature types from
their parent view. A refined feature type can transform
the original type by: defining new attributes or subfea-
tures; refining referenced attribute or subfeature defini-
tions by restricting its cardinality, its domain or visibility
(attribute) or change it to one of its subtypes (subfeature);
changing the type from concrete to abstract to force the
use of its subtypes; or by adding compatibility constraints
to constrain the model even more.

Figure 4 shows the mechanism of feature types refinement.
Type F1 is refined: the attribute a1 in F1 is declared as hidden,
and a new attribute a5 is declared. The feat3 subfeature
cardinality is also refined to [1..2]. Finally, even though F1′ is
not directly modified, the type F4 is also refined: the domain
of a4 is reduced and a new subfeature is defined.

a1: {0,4,5}
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feat3

feat3feat2 feat4

a6: [3]

«FeatureType»
F5

feat5

Parent Feature View Refined Feature View

Figure 4: Feature types refinement. Refined types are charac-
terised by the <refined> tag, while referenced definitions are
tagged with <ref>. The type F3 in the Refined Feature View
is shown with a dashed outline, as only the feat3 definition
is part of the refined view, while the feature type is not and is
just shown here for illustrative purpose.

7 Proof of Concept
A textual modelling language named ProCoLa has been de-
fined to support our modelling framework. The language
syntax is closely mapped to the different concepts described
in this paper. A language service has been implemented in
Visual Studio to support the ProCoLa language, providing an
important number of features for tool support, such as syn-
tax highlighting, syntax and semantic checks, automatic word
completion among others. The language is supported by a C#
compiler, and resembles that of an object-oriented program-
ming language. A formalism of the framework and model
analyses are currently being worked on in order to provide
additional tool support, such as the ability to see model-wide
dependencies of any change that may happen in a view, e.g.
the deletion of an attribute or type.

The semantics behind our modelling approach (and Pro-
CoLa) have been defined by implementing the translation
of models to Dynamic CSPs (DCSPs) [Bartak and Surynek,
2005] and Conditional CSPs (CondCSPs) [Mittal and Falken-
hainer, 1990] formalisms. DCSPs are used to handle the dy-
namic addition and removal of value assignments to attributes
during interactive configuration, while CondCSPs are used to
handle the notion of activity involved when dealing with dy-
namic cardinality or taxonomy structures for example, or the
existential (or universal) quantifiers implied by implementa-
tion constraints. During the configuration process, an end-user
first chooses which feature view he wants to use (if multiple
feature views exist in the hierarchy), and then can enter his
requirements through a user-interface by assigning values to
attributes, or connecting associations. A single CSP model is
usually used for all views, allowing a full propagation of the
choices to the other views. However, the user may also con-
sider configuring only a single view (using only compatibility
constraints). More details can be found in [Quéva, 2011].

A larger mobile device product family based on the mo-
tivation example presented in this paper has been modelled
using our conceptual framework and ProCoLa. The model
is split into 13 views, including three realisation views and
three structure views (one for each dimension), and a feature
views hierarchy of 7 views. It contains around 250 types, 200
attributes and over 300 constraints. During the modelling of
the product family, ProCoLa has provided a sufficient level



of support to capture the different part of the family and their
dependencies, in a reasonable amount of time. The translation
into the CSP formalisms is very fast, while the consistency
checks at runtime are done within a few seconds at most.

8 Discussion and Comparison with Related
Work

The different views provides a modelling framework as a con-
tribution to address the Research Questions (RQs) exposed in
Section 3. The clear separation of concerns in the structural
and realisation data for each dimension is motivated by RQ1
(What are the needs of the users of the model to be supported?)
and previous work on modelling each dimension (Section 2).
Each view is targeted at a different audience: the structural
model of the software is handled by a software architect, while
a production engineer may be more adequate to handle bill-
of-materials and manufacturing operations. Moreover, we
argue that structural and realisation views from each dimen-
sion should be considered independently from each others,
and unified in the feature models they contribute to imple-
ment, defined in feature views. In Figure 3, the sales persons
working on the device features model the types of input that
the end-user may be interested in. How this feature is im-
plemented is dependent on several structural elements from
different parts of the system: the touch screen hardware and a
touch framework component in the user experience software.
Those two elements can however be chosen independently
from each others, but will only provide the feature if they are
both present in the final product.

The UML metamodels (Figure 2) provide a good basis in
order to address the problem of modelling the different di-
mensions of an heterogeneous product family, as raised in
RQ2 (What modelling constructs support addressing the het-
erogeneity?). Uniform modelling constructs and the differ-
ent types of inter-views constraints defined in the framework
also contribute to the issue posed in RQ3 (How to integrate
together the different dimensions of heterogeneity in the mod-
els?): the implementation and mapping constraints permit to
model the interdependencies between the views, allowing a
tight integration of the different dimensions of the product
family. Modelling these constraints requires communication
between the different stakeholders. The sales person responsi-
ble for the touch input feature inquires the product designer
in order to assess what hardware components are needed for
the requested feature. On the other hand, product designers
and production engineers need to confer on which items are
available to realise the structural design of the hardware.

Our modelling approach also extends the concept of feature
model to a feature view hierarchy, as a contribution to RQ4
(How to support the management of such product family over
time and for different market situations?). The refinement of
feature type’s attributes can be used to model scenarios such
as Market differentiation (by adding constraints for specific
markets), Feature set evolution (by creating multiple feature
views depending on the current capabilities of the product) or
Distributors tailoring (by allowing them to create their own
specialised views). In a Market analysis scenario, several spe-
cific feature views are created in order to match the product

feature sets to introduce in the market. These views may then
be joined into one base feature view, by gathering common ele-
ments or creating more abstract features that can be specialised
to fit the original views, via refinement or implementation. The
feature view hierarchy thus enables a unification of the product
family management and evolution at the feature level, inde-
pendently from the heterogeneity of the family, while each
dimension may have its own separate mechanism for coping
with this issue (e.g. product data management, ...).

Modelling concepts from our approach are based on pre-
vious work, mainly in product configuration [Soininen et al.,
1998]. The four worlds from Heiskala et al. [2005] can also
be compared with the modelling views of our framework: the
needs world concerns the customer’s needs (in an abstract
way), and is thus close to our feature views, which describes
the abstract features that the customer may require; the service
solution world denotes the set of elements used to establish
the service’s specifications, as the structure views; the process
world describes how the service will be delivered, or realised,
as in our realisation views. Note that there is nothing in our
conceptual approach that is similar to the object-of-services
world from [Heiskala et al., 2005], which specifies the service
recipients or the environment relevant to those recipient. From
a modelling point of view, all these worlds are based on the
same metamodel, using different types and attributes, as well
as taxonomy and partonomy structures, as in our approach.
However, dependencies between types of different worlds are
simply modelled using classical constraints, while we use im-
plementation and mapping constraints. Also, our framework
is centered on the configured product, and thus the services de-
scribed in the services dimension are seen from the configured
product’s point of view, while the external environment is not
considered. Another type of view may thus be necessary in our
framework to define externally controlled elements (such as,
in the running example, access to company specific services
or credentials, data transfer from an old device, etc.).

Feature modelling approaches such as cardinality-based
models [Czarnecki et al., 2005a] also have similarities to our
feature views, although the richness of constraints and the
partonomy/taxonomy structures used in our models is some-
what more complex than with the classic feature-oriented re-
lations. Multi-view models in feature modelling have also
been studied. Czarnecki et al. [2006] sketches a model where
different levels of customisation are modelled (including fea-
ture and design view). Reiser and Weber [2006] and work
from Zaid et al. [2010] propose feature models with different
perspectives, although they are all centered on software vari-
ability and feature modelling techniques only, and the lack of
specialisation hierarchy may make the task of implementing
the unification with different structured views difficult.

Kumbang [Asikainen et al., 2007] is the closest to our work
on the software variability side, including their type-instance
approach. We consider our work to be an extension of Kum-
bang, as we use implementation constraints to unify structure
views from the different dimensions (including manufactured
products and services), as well as we model realisation data.
Thus the main contribution of our work is to provide concep-
tual and practical mechanisms to bring the different dimen-
sions together and unify them under feature models.



9 Conclusion
In this paper, we present an approach to help with the issue
of modelling a product family consisting of different design
disciplines (or dimensions). The presented framework has
been motivated by a four research questions and illustrated by
several scenarios.

Our framework is based on modelling views and synthesizes
the concepts from different approaches from product config-
uration, software variability and service configuration, and
unify them around feature views using implementation mech-
anisms. We also describe a feature view hierarchy and refine-
ment mechanisms to cope with the evolution and adaptation of
the product family, which remains an important issue [Krebs,
2008].

The approach has been motivated by the use case of a mo-
bile devices product family, and has been implemented in a
language prototype as a proof of concept. However, we have
yet to perform an in-depth case study with industrial data in
order to test the feasibility of implementing a real-life product
family with our framework, as well as completing the formal-
ism and tool support for the language, which is planned as
future work.
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