
When to use what: Structuralization, Specialization, Instantiation, Metaization -
Some Hints for Knowledge Engineers

Lothar Hotz, Stephanie von Riegen
Hamburger Informatik Technology Center, Department Informatik, University of Hamburg, Germany

e-mail: {hotz, svriegen}@informatik.uni-hamburg.de.

Abstract

In knowledge engineering, ontology creation,
and especially in knowledge-based configura-
tion often used relations are: aggregate rela-
tions (has-parts, here called structural relations),
specialization relation (is-a), and instantiation
(instance-of). A combination of the later is
called metaization, which denotes the use of mul-
tiple instantiation layers. In this paper, we give ex-
amples and use-hints for these relations especially
from the configuration point of view.

1 Introduction
For configuration-based inference tasks, like constructing a
description of a specific car periphery system [Hotz et al.,
2006] or drive systems [Ranze et al., 2002], the knowledge
of a certain domain is represented with a knowledge-modeling
language (KML) which again is interpreted, because of a de-
fined semantic, through a knowledge-based system or config-
urator [Arlt et al., 1999; Günter and Hotz, 1999]. Examples
for those KMLs are the Web-Ontology Language (OWL) and
the Component Description Language (CDL); further lan-
guages are e.g. described in [van Harmelen et al., 2007].
KMLs typically provide concepts or classes gathering all
properties, a certain set of domain objects has, under a unique
name. With concepts and instances a strict separation into
two layers is made: a domain model (or ontology) which cov-
ers the knowledge of a certain domain (abbr. layerD) and a
system model (or configuration) which covers the knowledge
of a concrete system or product of the domain (abbr. layerS).

Properties of a concept that map to primitive data types,
like intervals, values sets (enumerations), or constant values,
are called parameters. Properties that map to other concepts
or to instances are called relations. KMLs provide structural,
specialization, and instantiation as typical relations. A spe-
cialization relation relates a superconcept to a subconcept,
where the later inherits the properties of the first. This relation
(also called is-a relation) forms a specialization hierarchy
or lattice, if a concept has more than one superconcept. The
structural relation is given between a concept c and several
other concepts r, which are called relative concepts. With
structural relations a compositional hierarchy based on the

has-parts relation can be modeled as well as other struc-
tural relationships. Instances are instantiations of concepts
and represent concrete domain objects (instance-of).

Additionally to concepts, instances, and their relations,
constraints provide model facilities to express n-ary relation-
ships between properties of concepts [John, 2002; Gelle and
Faltings, 2003]. Constraints can represent restrictions be-
tween properties like arithmetic relations or restrictions on
structural relations (e.g. ensuring existence of certain in-
stances). Especially constraints on structural relations ex-
tend typical constraint technology, which is based on prim-
itive data types like numbers or strings [Hotz, 2009b].

In this paper, the use of structuralization, specialization,
and instantiation are discussed. Even those relations are
quite well-known they are sometimes confounded. Further-
more, when used with more than the two mentioned do-
main and system layers (see [Asikainen and Männistö, 2010;
Hotz, 2009a]) the instantiation relation is multiply applied,
which leads to new modeling layers and thus, probably to
modeling difficulties. The creation of such multiple layers is
called metaization [Strahringer, 1998].

In the following, we first consider all relations in more
depth and give examples of their use (Section 2 and Section
3). Afterward, we discuss metaization and its use for config-
uration (Section 4). We end with a short discussion on related
work and a conclusion.

2 Structuralization
As already elaborated in [Hotz, 2009a] configuration can be
considered as model construction, because a description of a
certain system (a configuration) is constructed by a configu-
rator. Furthermore, [Hotz, 2009a] emphasizes to consider the
has-parts relation as a has relation that may be used for
diverse aspects like has-Realizations or has-Features
in software-intensive systems. For the typical use, a structural
relation represents a compositional relation. In this case, be-
tween c and its relatives r, c denotes the aggregates and r
denotes the parts. The underlying structural relation is used
by configurators to construct the description and thus are the
motor of configuration. Depending on what instances (of c
or r) exist first, instances of the related concepts are created;
e.g. this enables reasoning from the aggregate to the parts or
contrariwise, from the parts to the aggregate. This semantic
holds for every structural relation. Thus, introducing several



Thing

Context

Feature

Product

Artefact

SoftwareHardware

-has Realization1..*
-realizes

1..*

-is Context of

0..*

-has Context

1
-is Feature of

0..*

-has Feature 1..* -has Software1..*

-is Software of 0..*

-has Hardware

1..*

-is Hardware of 0..*

Upper Model

Domain-specific model

Domain-specific extension of the upper model

Feature Space Artefact Space

Concept

Generalization

Structural relation with number restriction

Figure 1: Extract from an upper-model for modeling
software-intensive systems.

structural relations enables the use of adequate domain names
like has-Features or has-Realizations, and thus to fa-
cilitate maintenance.

Figure 1 pictures an upper-model for software-intensive
systems (UMSiS, [Hotz et al., 2006]). It defines four as-
set types (features, context, hardware and software artefacts)
which are common to most application domains of software-
intensive systems (SiS). A product, i.e. the result of the prod-
uct derivation, contains software and hardware artefacts as
parts, these together realize particular features. Several struc-
tural relations are depicted, like has-Realizations and
has-Feature. When using the upper-model for a specific
domain, the UMSiS is extended with domain-specific knowl-
edge about hardware and software artefacts, the existing fea-
tures, relevant context aspects, etc. In the example above, the
concepts are organized in different spaces. Each space rep-
resents a specific aspect of the domain and thus each config-
ured product should have those aspects. Figure 1 provides the
example of the feature and artefact aspects in the domain of
software-intensive systems. Thus, spaces separate concepts
of one layer. Through this grouping of concepts of one layer
the configuration model is easier to manage for a knowledge
engineer. Furthermore, concepts of different spaces are con-
nected by a structural relation. This ensures that a configured
product finally contains all modeled aspects. In contrast to
this, in Section 3 we will see, how the instantiation relation
separates concepts and instances on different layers.

3 Specialization vs. Instantiation
A concept describes a set of instances. The specialization
relation (or subsumption or is-a relation) between two con-
cepts c and s describes a subset relation, i.e. the set of in-
stances of concept c is a subset of the set of instances of its
superconcept s (see also [Brachman, 1983]). Or, as defined
in ontogenesis.knowledgeblog.org/699: “c is-a
s iff: given any i that instantiates c, i instantiates s”. An in-
stance of a class c is always an instance of each superclass s
of c. We consider this aspect as the hinting characteristic for
knowledge engineers: During knowledge modeling one can
try to make a specialization between two domain aspects and

test this characteristic. Thus, it is tested if an instance of c is
also reasonably an instance of s. If it is false the knowledge
engineer must not use a specialization but e.g. instantiation,
because c and s are probably on different layers.

Motion 
Detection 
Software

instance-of

is-a

has

Compilable 
Concept Artefact

M D S

Software

Motion 
Detection 
Software

Software

Artefact

Compilable 
Concept

Figure 2: Good and bad use of specialization and instantiation
in software-intensive systems.

An example for this situation is shown in Figure 2; it
presents the confounded usage of specialization and in-
stantiation relations in the aforesaid modeling of software-
intensive systems domain (SiS) (Section 2). The system
model layer (SiSS) covers specific individuals, here the
Motion Detection Software. This object is an in-
stance of Software (SiSD) but no instance of Compilable
Concept. Compilable Concept denotes a specific kind
of concept (thus a specific description of instances) that can
be compiled. Thus, in the “bad” use, Motion Detection
Software is incorrectly considered as a concept, i.e. as a
description of instances. Instead it is an instance (here of
Software), thus a specific domain object.

When a concept s is specialized to c all properties of s
are inherited by c. Furthermore, the properties defined in c
that are also defined in s must have more special property
values than those in s. For checking this strict specialization,
the subset semantic is defined for all primitive data types and
the structural relation [Hotz, 2009b]. Thus, the specialization
relation is used for structuring the space of needed concepts
for representing domain knowledge.

By the time a concept is instantiated, properties of the cre-
ated instance are initialized by values or value ranges speci-
fied in the concept. Thus, the concept determines the structure
of the instance (i.e. the properties). In this sense, a concept
says something about its instances, i.e. a concept is on a dif-
ferent layer than its instances. By reducing the value ranges
according to user decisions or constraint computations the
configurator subsequently creates a specific description con-
sisting of instances.

4 Metaization
For structuralization and specialization, the involved concepts
are on one layer. However, for instantiation and metaiza-
tion they are on different layers. By instantiating a concept
one instance is created, i.e. a step from a set of instances
to an individual element of this set is performed. If this
step is cascadized, a concept c can be considered as an in-
stance of another concept cm, i.e. a step from a set of con-
cepts to one specific concept is performed. The concept cm



is on a further layer. Figure 3 demonstrates this situation.
The concept Feature is an instance of Abstract Concept
which is a specialization of concept-m. All concepts on
the metalayer CDLM represent the modeling facilities of
CDL, describing the concepts and relations of CDL. Con-
cept Artefact is a typical CDL concept (it is an instance of
concept-m) and the relation has-Realization is a struc-
tural relation (represented by instantiating the CDLM con-
cept relation-descriptor-m) ([Hotz, 2009a] for more
on modeling CDL with CDL). CDLM represents all what
is known about CDLD, i.e. concepts and relations.

relation-
descriptor-m

concept-m

MM M D S

instance-of

is-a

has

parameter-
descriptor-m

Feature

Artefact

has-
R

ealization

has-P
ara-

m
eters has-R

ela-
tions

Pre Crash
Detection

Abstract 
Concept

Figure 3: Modeling the Component Description Language.

Figure 4 presents the enhancement of Figure 1 by the ad-
ditional layer SiSM . SiSM describes the SiSD layer con-
cepts Feature, Software, and Hardware as Abstract
Concept, Compilable Concept, and Manufacturable
Concept, respectively. Thus, it is a domain dependent ex-
tensions of CDLM .

By doing so, constraints on concepts of SiSD can be ex-
pressed. For example a constraint represents that each feature
should be realizable by an artefact. A constraint can check
that each feature (a subconcept of Feature) should have
a structural relation has-Realization to a subconcept of
Artefact. These kinds of constraints may be hard to define,
because typically they are not related to one specific concept
but to several. Still, such constraints are usually part of some
modeling guidelines.1

In [Hotz and von Riegen, 2010b; 2010a], we introduce the
Reasoning Driven Architecture (RDA) that allows the im-
plementation of metalayers by using a configuration system
on each layer. By doing so, each layer can be seen as a
knowledge-based system that says something about the layer
below. In the case of RDA, SiSD contains the knowledge of
domain objects, which again are represented on SiSS . By in-
troducing the metalayer SiSM , knowledge about knowledge
is made explicit, i.e. knowledge about the knowledge of do-
main objects. This enables the use of reasoning techniques
for each layer, not only for the domain and system layers as
it is typically the case in knowledge-based systems. The cen-
tral point of such an implementation is a mapping between
instances on one layer to concepts on the next lower layer
(see Figure 5 and [Hotz and von Riegen, 2010a] for a map-

1The SiSMM layer has been omitted because no modeling is
required here.

Motion 
Detection 
Software

instance-of

is-a

has

Short Range 
Radar Sensor

Compilable 
Concept

Feature

Artefact

Hardware

Software

Manufacturable
Concept

Pre Crash
Detection

Product Car

Abstract 
Concept

has-
R

eali-
zation

has-
Feature

has-
H

ardw
are

has-
S

oftw
are

D SM

concept-
m

has-
supercon-

cept-m

Realizable 
Concept

Figure 4: Modeling software-intensive systems.

ping for CDL and [Tran et al., 2008] for mapping for OWL or
[Bateman et al., 2009]). Metalayers allow for handling (meta)
tasks and services. For example, [Tran et al., 2008] proposes
to provide statistics about the model (e.g. retrieve all knowl-
edge elements about Pre Crash Detection). With a metalayer
like provided in Figure 4, during configuration of a software-
intensive system one can call different external mechanisms
for each specific metaconcept. For example, if an instance of
an instance of Compilable Concept (e.g. an instance of
Software) is configured, an external compiler mechanism
can be called to realize the software. If an instance of an
instance of Manufacturable Concept is configured, the
warehouse can be contacted to check if the needed parts for
the manufacturing are present. Thus, through the metalayer
the actual configuration of a product can be monitored and
reasoning on the configuration process can be processed.

5 Related Work
The modeling approach, especially metaization [Strahringer,
1998], has similarities to the Model-Driven Architecture
[Miller and Mukerji, 2003; Kühne, 2006; Atkinson and
Kühne, 2003; Hotz and von Riegen, 2010a], because of the
explicitation of several layers. However, the introduction of
reasoning systems for each layer allows the direct usage of
existing reasoners for inferring on metalayers.

Metaization as such is less considered in knowledge-based
configuration. However, especially when learning methods,
i.e. automated knowledge engineering, has to be used in
changing environments, the automated monitoring of KBs
becomes crucial and is conceivable with the presented tech-
niques.

6 Conclusion
In this paper, we state the differences of the main relations
for modeling configuration knowledge, i.e. specialization, in-
stantiation, and structuralization. By introducing and clari-
fying the use of instantiation on several metalayers, we open
up a further modeling facility and sketch first usage of this
metaization technique for knowledge-based configuration. In



(individual :name AbstractEntity-1
:has-superconcept-m AbstractEntity-2
:domain-name “Feature”)

(i di id l Ab t tE tit 2(individual :name AbstractEntity-2
:domain-name “PreCrashDetection”
:is-subconcept-of-m AbstractEntity-1
:has-relations relation-descriptor-m-1)

(individual :name CompilableEntity-1
:has-superconcept-m CompilableEntity-2
d i “S ft ”):domain-name “Software”)

(individual :name CompilableEntity-2
:domain-name “MotionDetectionSoftware”
:is-subconcept-of-m CompilableEntity-1
:has-relations relation-descriptor-m-2)

(indi id al name elation desc ipto m 1(individual :name relation-descriptor-m-1
:domain-name “has-Realization”
:relation-of-m AbstractEntity-2 
:has-left-side structural-spec-1)

(individual :name structural-spec-1
:in-relation-left-m relation-descriptor-m-1
:some of CompilableEntity 2):some-of CompilableEntity-2)

(individual :name relation-descriptor-m-2
:domain-name “realizes”
:relation-of-m CompilableEntity-2
:has-left-side structural-spec-2)

(individual :name structural spec 2(individual :name structural-spec-2
:in-relation-left-m relation-descriptor-m-2
:some-of AbstractEntity-2)

Figure 5: CDL Example with instances on CDLM represent-
ing concepts of CDLD. This representation enables to reason
on domain concepts with instance-related reasoning services.

upcoming work, we will apply these techniques in learning
environments in the field of robot vision.

References
[Arlt et al., 1999] V. Arlt, A. Günter, O. Hollmann, T. Wag-

ner, and L. Hotz. EngCon - Engineering & Configuration.
In Proc. of AAAI-99 Workshop on Configuration, Orlando,
Florida, July 19 1999.

[Asikainen and Männistö, 2010] T. Asikainen and
T. Männistö. A metamodelling approach to configu-
ration knowledge representation. International journal of
mass customisation, 3:333–350, 2010.

[Atkinson and Kühne, 2003] Colin Atkinson and Thomas
Kühne. Model-Driven Development: A Metamodeling
Foundation. IEEE Softw., 20(5):36–41, 2003.

[Bateman et al., 2009] J. Bateman, A. Castro, I. Normann,
O. Pera, L. Garcia, and J.M. Villaveces. OASIS common
hyper-ontological framework (COF), Deliverable D1.2.1.
Technical report, University of Bremen, 2009.

[Brachman, 1983] Ronald J. Brachman. What is-a is and
isn’t: An analysis of taxonomic links in semantic net-
works. IEEE Computer, 16(10):30–36, 1983.

[Gelle and Faltings, 2003] Esther Gelle and Boi Faltings.
Solving mixed and conditional constraint satisfaction
problems. Constraints, 8(2):107–141, 2003.

[Günter and Hotz, 1999] A. Günter and L. Hotz. KON-
WERK - A Domain Independent Configuration Tool. Con-
figuration Papers from the AAAI Workshop, pages 10–19,
July 19 1999.

[Hotz and von Riegen, 2010a] L. Hotz and S. von Riegen.
A Reasoning-Driven Architecture - a Pragmatic Note on
Metareasoning. In J. Sauer, editor, Proc. of 24. Work-
shop, Planen, Scheduling und Konfigurieren, Entwerfen
(PuK2010) – KI 2010 Workshop, Göttingen, Germany,
2010.

[Hotz and von Riegen, 2010b] L. Hotz and S. von Riegen.
Knowledge-based Implementation of Metalayers - The
Reasoning-Driven Architecture. In Alexander Felfernig
and Franz Wotawa, editors, Proceedings of the ECAI
2010 Workshop on Intelligent Engineering Techniques for
Knowledge Bases (IKBET), 2010.

[Hotz et al., 2006] L. Hotz, K. Wolter, T. Krebs, S. Deelstra,
M. Sinnema, J. Nijhuis, and J. MacGregor. Configuration
in Industrial Product Families - The ConIPF Methodol-
ogy. IOS Press, Berlin, 2006.

[Hotz, 2009a] L. Hotz. Construction of Configuration Mod-
els. In M. Stumptner and P. Albert, editors, Configuration
Workshop, 2009, Workshop Proceedings IJCAI, Pasadena,
2009.

[Hotz, 2009b] L. Hotz. Frame-based Knowledge Represen-
tation for Configuration, Analysis, and Diagnoses of tech-
nical Systems (in German), volume 325 of DISKI. Infix,
2009.

[John, 2002] U. John. Konfiguration and Rekonfiguration
mittels Constraint-basierter Modellierung. Infix, St. Au-
gustin, 2002. In German.

[Kühne, 2006] T. Kühne. Matters of (Meta-)Modeling. Jour-
nal on Software and Systems Modeling, 5(4):369–385,
2006.

[Miller and Mukerji, 2003] Joaquin Miller and Jishnu Muk-
erji, editors. MDA Guide Version 1.0.1, omg/03-06-01.
Object Management Group, 2003.

[Ranze et al., 2002] K.C. Ranze, T. Scholz, T. Wagner,
A. Günter, O. Herzog, O. Hollmann, C. Schlieder, and
V. Arlt. A Structure-Based Configuration Tool: Drive So-
lution Designer DSD. 14. Conf. Innovative Applications
of AI, 2002.

[Strahringer, 1998] S. Strahringer. Ein sprachbasierter Meta-
modellbegriff und seine Verallgemeinerung durch das
Konzept des Metaisierungsprinzips. In Proceedings of the
Modellierung 1998. Astronomical Society of Australia,
1998.

[Tran et al., 2008] Thanh Tran, Peter Haase, Boris Motik,
Bernardo Cuenca Grau, and Ian Horrocks. Metalevel In-
formation in Ontology-Based Applications. In Dieter Fox
and Carla P. Gomes, editors, Proc. of the 23rd AAAI Conf.
on Artificial Intelligence (AAAI 2008), pages 1237–1242,
Chicago, IL, USA, July 13–17 2008. AAAI Press.

[van Harmelen et al., 2007] Frank van Harmelen, Vladimir
Lifschitz, and Bruce Porter, editors. Handbook of Knowl-
edge Representation (Foundations of Artificial Intelli-
gence). Elsevier Science, 2007.


