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ABSTRACT
Many web properties make extensive use of item-based collabo-
rative filtering, which showcases relationships between pairs of
items based on the wisdom of the crowd. This paper presents
LinkedIn’s horizontal collaborative filtering infrastructure, known as
browsemaps. The platform enables rapid development, deployment,
and computation of collaborative filtering recommendations for al-
most any use case on LinkedIn. In addition, it provides centralized
management of scaling, monitoring, and other operational tasks for
online serving. We also present case studies on how LinkedIn uses
this platform in various recommendation products, as well as lessons
learned in the field over the several years this system has been in
production.

Keywords: collaborative filtering, social networks, recommender
systems

1. INTRODUCTION
The proliferation of data and information-rich user experiences

have transformed data mining into a core production use case, espe-
cially in the consumer web space. A typical example is showcasing
relationships between pairs of items based on the wisdom of the
crowd, also known as item-to-item collaborative filtering (ICF) [13].
At LinkedIn, the largest online professional social network, item-to-
item collaborative filtering is used for people, job, company, group,
and other entity recommendations and is a principal component of
engagement. That is, for each entity type on the site, there exists a
navigational aid that allows members to browse and discover other
content, as shown in Figure 1. We call each of these a browsemap.

Initially designed to showcase co-occurrence in views of other
member’s profiles (a profile browsemap or “People Who Viewed
This Profile Also Viewed”), we grew the browsemap computation
into a generic piece of horizontal relevance infrastructure that can
support any entity with a simple configuration change. This infras-
tructure, the Browsemap platform, enables easy addition of other
navigational content recommendations. Moreover, the availability
of a scalable collaborative filtering primitive also permits easy in-
clusion of ICF-based features into other models and products. For
example, “Companies You May Want to Follow” recommender sys-
tem, which allows members to follow a company to receive its status
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Figure 1: Examples of browsemaps generated for various enti-
ties. Recommendations are computed by counting co-occurrence of
views for these entities.

updates, uses the Browsemap platform to compute collaborative
filtering of company follows as part of its recommendation set. In
essence, browsemaps form a latent graph of co-occurrences of across
entity types on LinkedIn.

Browsemap is a managed platform with mostly shared compo-
nents and some vertical-specific logic. LinkedIn’s frontend frame-
work emits activity events on every page view. A parameterized
pipeline for each entity type uses these events to construct a co-
occurrence matrix with some entity-specific tuning. Browsemaps are
computed offline incrementally in batches on Hadoop [16], loaded
into an online key-value store [14], and queried through an entity-
agnostic online API. As Browsemap is a horizontal platform, it
provides high leverage to each application developer through reuse
of common components, centralized monitoring, and ease of scaling
to the billions of weekly page views on LinkedIn. An application
developer simply specifies the type of collaborative filtering that is
needed, the location of the input data, and changes any parameters
if needed; the resulting browsemap is then available in Hadoop and
via an online API in a straightforward manner.



The Browsemap platform has been in production at LinkedIn for
over four years and powers over two dozen use cases on the site.

The contributions of this paper are the following:
• The architecture of a large-scale collaborative filtering system at

a top online property
• A description of the diverse set of applications that are powered

through the availability of an easy collaborative filtering primitive
• A collection of lessons learned in developing and deploying the

Browsemap platform in the field
The rest of the paper is organized as follows. Section 2 catalogs

related work. Section 3 describes the Browsemap platform, with
Section 4 showcasing applications that are powered with this in-
frastructure. Section 5 recounts lessons learned in deploying and
running Browsemaps and finally, Section 6 concludes the paper.

2. RELATED WORK
Collaborative filtering is a commonly applied technique in com-

mercial recommender systems. Amazon uses a neighborhood-based
approach for its product recommendations [9]. YouTube combines
covisitation statistics with a user’s personal activity on the site to
show additional videos to watch [4]. Netflix employs matrix factor-
ization methods for its movie recommendations [8]. eBay applies
collaborative filtering as a component in their query suggestions [5].
Tivo uses correlation-based similarity to suggest shows to watch [2].
Yahoo! applies a factorization approach for song recommendations
on its music property [7]. Google uses a linear combination of
memory- and model-based collaborative filtering to showcase addi-
tional stories for the user to read in their news product [3].

In this work, we describe LinkedIn’s collaborative filtering solu-
tion, which, rather than applied to a specifical vertical, is a horizontal
recommendation infrastructure that powers several principal recom-
mendation products and complements content-based features in
other recommendation products. In particular, we describe the in-
frastructure as well as challenges and lessons learned in deploying
and running a large-scale recommendation system.

3. ARCHITECTURE
The Browsemaps are an item-to-item collaborative filtering plat-

form, where member browsing histories are used to build a latent
graph of co-occurrences of entities.

The platform has three properties. First, it supports all entity types
on LinkedIn, such as member profiles, company pages, and job post-
ings. Creating a browsemap for a new entity type requires minimal
effort. Second, the platform is flexible to address each entity’s own
characteristics. For example, while member profiles do not expire,
a job posting does expire after a certain date. The computation of
the job browsemap needs to remove such expired jobs. Last, the
platform is able to scale, through judicious use of incremental com-
putation and pipelining, across the billions of weekly page views on
LinkedIn.

Figure 2 illustrates the Browsemap system architecture. The
Browsemap platform is a hybrid offline/online system. The offline
system uses Hadoop [16] for its batch computation engine because
of its high throughput, fault tolerance, and horizontal scalability.
Computed browsemaps are bulk loaded into a distributed key-value
store [14], which provides low-latency queries.

3.1 Offline Batch Computation
LinkedIn’s frontend services emit activity events on every page

view, either on LinkedIn’s website or through its mobile applications.
These behavior events are transported to Hadoop via a distributed
publish-subscribe messaging system for event collection [15].
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Figure 2: Browsemap architecture consists of offline computation
on Hadoop to generate a set of browsemaps, and an online query
API, which fetches the results from a key-value store.

The Browsemap Engine uses the well-known technique of co-
occurrence or association rule mining [1] to process the data and
generate the latent browsemap graph. The system uses techniques
to dampen entities that are overly popular. For example, President
Barack Obama is an active member of the site, and his profile is
viewed several orders of magnitude more than most other members;
this dampening prevents him from being overly correlated through-
out the ecosystem. The system also includes a form of hysteresis so
that newer views are weighted more heavily than older ones, creating
a sense of dynamism.

The engine supports the diverse characteristics of the browsemaps
on LinkedIn. First, there are many entities, such as members, jobs,
and companies, and each entity may have multiple types of activity
events. For example, job entity has two types of events—view and
apply, as people can view and apply for jobs. Similarly, the company
entity has view and follow activity events. Multiple event types
can be combined to generate one browsemap, or they can each
power a browsemap. For example, job browsemap combines the
job-apply and job-view events with more emphasis on job-apply
activity. Company entity, on the other hand, has company-view
and company-follow browsemaps, each is built separately. Lastly,
different browsemaps can share some common functionalities, while
each has its own requirements. For example, all browsemaps need
to filter out activities by spam or banned users, and job browsemap
has an additional requirement to exclude expired jobs.

To meet the different requirements of the various browsemaps, we
developed an in-house domain-specific language (Browsemap DSL)
that describes how to build a browsemap, and a collection of modules
that can be chained together via the DSL. Figure 3 demonstrates
an example that defines the workflow for job and company-follow
browsemaps. The module collection contains a set of modules; each
one is a component performing a particular task. Some modules
can be used by different browsemaps such as removing spam user
activities, and some modules are specific to a browsemap, such as
removing expired jobs.

A configuration file written in the DSL defines a browsemap
workflow. First it describes the module dependency: which mod-
ules to use and how the modules are chained together to create the
workflow. The input dataset and output location of a module are also
specified in the configuration file.

In addition, the Browsemap DSL provides mechanisms to tune
parameters for an entity-specific browsemap workflow. For example,
the browsemap for job entity needs to be refreshed frequently due



module_collection:
module: filter_spam_user
module: filter_expired_job
module: count_co_occurrence

# . . . some more modules . . .

---
application: job-view
refresh_rate: 6 hours
workflow:

filter_expired_job:
input: /data/job/views
output: /data/job/expired_jobs_removed

filter_spam_user:
dependencies: filter_expired_job
output: /data/job/spam_user_removed

# . . . some more steps . . .

count_co_occurrence:
dependencies: ...
output: /data/job/browsemap

---
application: company-follow
refresh_rate: 1 day
workflow:

filter_spam_user:
input: /data/company/follow
output: /data/company-follow/spam_user_removed

# . . . some more steps . . .

count_co_occurrence:
dependencies: ...
output: /data/company-follow/browsemap

Figure 3: An example of defining job browsemap and company-
follow browsemap workflows in Browsemap DSL. The mod-
ule_collection contains a set of modules; each performs a particu-
lar task. Subsequently, each workflow is defined by chaining the
modules together and providing parameters for each module. (The
parameter values shown here are for demonstration purposes only.)

to the ephemeral nature of job postings, but the browsemaps for
companies can be refreshed less frequently as they are more static.

The collection of modules promotes knowledge sharing and is
a main contributing factor for the quick development of a new
browsemap. While some modules are specific to a browsemap,
many are common modules that can be shared among different
browsemaps.

Internally, each module is implemented as a set of Hadoop jobs,
where each job produces output that is the input for the subsequent
job. The workflows are managed and executed by a workflow man-
ager [15]. Certain modules are computed incrementally with Hour-
glass [6], an open source library that operationalizes incremental
computation of time series data.

For example, the job entity has job-view events. This dataset is
the input to the module that filters out expired jobs, a module that is
only used by the job browsemap workflow. After filtering expired
jobs, the remaining active jobs become the input of the subsequent
module which filters activities from spam users. After a few more
steps, the co-occurrence counting module is used to do the bulk
work of generating the browsemap.

As of writing, the Browsemap Engine processes hundreds of
terabytes weekly, and has more than 130 Hadoop jobs to compute
all entities.

3.2 Online Query API
The latent browsemap graph computed by the offline Browsemap

Engine is bulk loaded into Voldemort [14], an open source dis-
tributed key-value store, for the Browsemap online query API to

access. Voldemort provides low latency, high throughput, and high
availability features that facilitate responding to user requests in a
timely manner: in LinkedIn’s production data centers, more than
99% of requests are serviced within 10 milliseconds.

The online API is entity-agnostic; no change is needed when a
new browsemap is loaded. The store has a composite key of entity
type and identifier, and a value representing a set of recommenda-
tions. As well, the system can A/B test different models by shunting
to different recommendation stores for a percentage of viewing
traffic.

4. APPLICATIONS
The Browsemap platform powers many navigational aids on

LinkedIn. They are well received by our members, and a sizable
portion of LinkedIn’s traffic is directly attributed to them. Besides
being a component of engagement on LinkedIn, these browsemaps
are used in several hybrid recommendation applications that use a
combination of collaborative filtering and content-based features.
The aggregated behavior of a large number of users provides strong
signals to these applications, in addition to content information such
as member profiles and job descriptions. Inclusion of collabora-
tive filtering-based features means simply plugging in the readily
available browsemap datasets.

4.1 Navigational Aids
Each entity on LinkedIn has a navigational aid. Figure 1 illustrates

a few examples. In Figure 1a, a navigational aid is displayed on a
member’s profile that allows members to discover other related
profiles. Similarly, the jobs page shows other jobs (Figure 1b) and
the group page shows other groups (Figure 1c).

An entity can be associated with multiple types of activity events,
such as the case for companies. One aid is powered by the company-
follow browsemap and the other is powered by the company-
view browsemap (shown in Figure 1d). The two navigational aids
serve different needs for LinkedIn members. The company-follow
browsemap is for deep engagement with a company; following a
company helps members keep track of the status updates from this
company. The company-view browsemap, however, is for cursory
browsing and serendipitous discovery of content.

Lastly, a particular member segment may want a more customized
navigational experience. Recruiting is a prominent use case exer-
cised by premium members of LinkedIn, and recruiters can use a
customized navigational aid to discover profiles that are usually
viewed together by other recruiters. Using the Browsemap platform,
this is easily achieved by plugging in a member selection module
that selects viewing events performed by the recruiting community.

4.2 Companies You May Want To Follow
Companies can establish a presence on LinkedIn through com-

pany pages. Currently, there are more than 3 million companies that
have created company pages to showcase their business. “Compa-
nies You May Want To Follow”, illustrated by Figure 4, is a product
on LinkedIn that recommends companies to members using a com-
bination of collaborative filtering and content-based features. A
member’s previous follow action is a strong signal about interest in
related companies, the information that company-follow browsemap
can provide.

At a high level, the recommendation algorithm finds a set of possi-
ble companies, the candidate set, that the member may be interested
in. Then, each company in the candidate set forms a (member, com-
pany) tuple with the member. The algorithm computes a propensity
score for each tuple predicting the probability the member will fol-



Figure 4: An illustration of “Companies You May Want To Fol-
low”, a member-to-company recommender system. The recommen-
dations are generated by combining signals from company-follow
browsemap and other content-based features.

low this company. The companies with high propensity scores are
returned as the recommendations for the member.

Figure 5 demonstrates the process where the company-follow
browsemap is used to generate the “related-companies” feature.
Later, this feature is used to enrich the member profile by aug-
menting the textual content entered by the member. The feature is
generated by iterating through the companies that a member has
already followed and retrieves the company-follow browsemap for
each of them. Merging all of the browsemaps produces a list of
related companies that the member may like.

Besides the company-follow browsemap, this recommender sys-
tem also uses content-based features. Member features such as in-
dustry, location, and experience are used. Company features include
company name, industry, location, description, and so on.

With these two types of features of the member and company
entities, the propensity score for a (member, company) tuple is com-
puted by first calculating the similarity scores of the related features,
and then combining these individual scores together using a logistic
regression model. Figure 6 gives some examples of related features:
the member’s company-follow browsemaps is matched against the
company identifier, the member’s industry is matched against the
company’s industry, and the member’s experience is matched against
the company’s description.

Explicitly, for member i and company j, there are a set of related
features X1(i, j), X2(i, j), . . . Xn(i, j). Training samples are taken
from historical data and are labelled with Yi j ∈ {0,1}, where 0
means the member i did not follow a company and 1 means the
member i followed a company. The logistic regression model can
be represented as:

P(Yi j = 1|X) = σ(b+
n

∑
k=0

Wk ·Xk(i, j))

where Wk represents the learned weight for the kth feature, and b is
a constant scalar.

The company-follow browsemap is important in this product be-
cause it surfaces the implicit connection between companies that is
driven by members’ preference. It creates a latent graph of the com-
panies that is not visible by studying the content alone. The addition
of this feature in the training model helps boost the propensity scores
of companies that are more related as perceived by our members.

4.3 Similar Companies
The previous product, “Companies You May Want To Follow”,

is a member-to-company recommendation: suggesting companies
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Figure 5: “Companies You May Want To Follow” augments mem-
ber information with the company-follow browsemap. It iterates
through all companies a member already follows, and aggregates
the browsemaps of these companies.
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Figure 6: “Companies You May Want To Follow” has two types of
features for members: collaborative filtering features extracted from
the company-follow browsemaps, and the content-based features
extracted from the member profile. The algorithm calculates the
similarity scores from the matching features of member and com-
pany entities, and computes an overall propensity score from the
individual scores.

based on matching member and company information. “Similar
Companies”, shown in Figure 7, is a company-to-company rec-
ommendation product that suggests to LinkedIn members a set of
companies based on matching company information.

Similar to “Companies You May Want To Follow”, the system
extracts both collaborative filtering and content-based features from
the company entities. The collaborative filtering features include co-
occurrence browsemaps built from the follow, view, and employed-at
activities on LinkedIn. The employed-at browsemap captures the
LinkedIn members job transition, that is, “People who worked at
company X also worked at company Y ”. High similarity scores of
browsemap features indicate strong similarity because of aggregated
member behavior.

4.4 Similar Profiles
Helping recruiters and hiring managers find highly qualified candi-

dates is an important service LinkedIn provides. Shown in Figure 8,
“Similar Profiles" enables hiring professionals to discover similarly
qualified candidates on LinkedIn.

Company-view browsemap and profile browsemap, along with
several content features from profiles, are used for this recommender
system. The algorithm for “Similar Profiles” follows the same de-
sign pattern of the previous two recommender systems. For a set of
(source member, target member) tuples, where the “source member”
is the member who needs recommendation, and the “target mem-
ber” is the potential recommended member, our goal is to find a
propensity score for each tuple. Target members with high propen-



Figure 7: An illustration of “Similar Companies”, a company-to-
company recommender system. The recommendations are generated
by combining signals from multiple browsemaps and other content-
based features.

Figure 8: “Similar Profiles” is a hybrid recommender system
for member-to-member suggestions. It uses both company-view
browsemap and profile browsemap to enrich the profile information.

sity scores are returned as the recommendation for the source mem-
ber.

The company-view browsemap is used to expand the member’s
current company to a set of companies. This expansion significantly
increases the recall of the model. Although this enhancement is
done with minimal effort thanks to the availability of the browsemap
dataset, it is one of the most powerful signals in the model: an
A/B split test showed that leveraging the company-view browsemap
alone increased profile views by more than 30%.

It is possible to use browsemap to infer content as well, as exhib-
ited by how the profile browsemap is used to extend the member
content information. We can augment member profiles with more
content from other associated profiles. For example, a member’s
skill information can be augmented by skills from people he is as-
sociated with. We call this the “virtual profile” of the member [10].
In “Similar Profiles”, the profile browsemap is used to find the as-
sociated members. The perception is that LinkedIn’s members are
more likely to be viewed with other members who are similar in
professional aspects, such as titles, skills, employment history, and
education background. Aggregating the member information from
all of the member’s profile browsemap essentially extends the mem-
ber’s profile to a much richer profile. An A/B split test shows a 15%
lift in profile views with the addition of virtual profiles.

4.5 Suggested Profile Updates
When a member has more detailed information such as work

experience, education, and location, LinkedIn can provide better
service to her with a richer user experience and more personalized
recommendations on the website.

To make it easier for a member updating her profile, LinkedIn
predicts certain attributes that she has not yet included, such as

Figure 9: “Suggested Location Update” predicts a member’s loca-
tion based on profile browsemap and member’s connections.

Figure 10: “Lead Recommendations” allows sale professionals to
discover new leads at their client companies. It is a hybrid recom-
mender system, combining profile browsemap and content-based
features.

company and location. The prediction is shown to the member,
and upon approval, the information is saved to her member profile.
Figure 9 shows the suggested location update for a member.

Social graphs of a member can provide strong location clues. For
predicting user locations, two types of social graphs are used: the
latent graph provided by the profile browsemap, and the explicit
connection graph the member has established on LinkedIn. The
basis for using profile browsemap is that a member is usually viewed
together with the people they interact with in the real world.

The algorithm’s goal is to find the possible locations for a member.
The problem is formulated to find the likelihood that a member
resides in a particular location. That is, with a collection of (member,
location) tuples, find the probability of each tuple. The member’s
most probable location can be predicted by performing a top-1
operation on these probabilities.

Each tuple is associated with a feature vector that is extracted
from both graphs: the number of related members who indicated
on their member profiles that they reside in the given location. The
(member, location) tuple’s probability is computed based on a binary
classification model. Aggregating through all (member, location)
tuples, the location with the highest probability score is used as the
predicted location.

4.6 Lead Recommendations
“Lead Recommendations” is a product that helps sales profes-

sionals discover more leads at their client companies, as shown in
Figure 10. On a key prospective client’s profile page, a list of rec-
ommended members is shown, suggesting some decision-makers
and influencers critical to a successful sale at the same company.

The product is based on the insight that a prospect’s close cowork-
ers who have similar seniority levels as him can potentially influence
the prospect. The algorithm is split into two steps, both leveraging
the prospect’s profile browsemap: discovering the prospect’s col-
leagues in his company with whom he works closely, and identifying
the colleagues who have similar seniority level as the prospect.

The prospect’s profile browsemap and explicit connection graphs
are used to identify his close coworkers. This set of members is the
candidate set; that is, the member pool that the recommendations



Figure 11: A screenshot of related searches in the context of a
search for the query “Hadoop”. It uses search query browsemap as
a signal for generating related searches.

are generated from. Similar to “Suggest Profile Updates”, with a
collection of (prospect, candidate) tuples, the problem can be for-
mulated as calculating the probability of each tuple. By aggregating
the tuples for a prospect, the algorithm returns a top-n list based on
the scores.

The profile browsemap is further used to extract seniority features
from the member’s current title. Each title in LinkedIn’s database is
associated with a seniority score, representing the number of years
of experience for the average member to achieve that position. The
higher the seniority of a position, the more years it requires to attain
the position. Employees with a similar level of seniority in a com-
pany usually have a similar seniority score and are usually viewed
together. Based on this premise, “lead recommendations” uses
several features utilizing seniority information such as the seniority
scores of the prospect and the candidate, and the average seniority
scores of their profile browsemap and explicit connection graph.

4.7 Related Searches
“Related Searches” is a search tool that suggests other queries

that are related to the user queries [11]. As shown by the example
in Figure 11, “Related Searches” enables users to refine and ex-
plore searches by providing alternate related queries, and improves
members’ search experience to find relevant results.

There are four main signals used to capture various dimensions
of similarity among search queries and to determine a unified set of
related search suggestions. The first signal is based on collaborative
filtering and is generated by the Browsemap platform. The collabo-
rative filtering-based signal uses temporal locality between queries
for relating search queries; that is, searches correlated by time are
considered related. The other three signals are: queries correlated by
result clicks, queries with overlapping terms, and queries correlated
by clicks on related search suggestions. The system combines the
search suggestions generated by each of these signals, where results
from collaborative filtering are given the highest preference because
suggestions from this signal have the highest click-through rate.
In Reda et al. [11], we evaluated each of these signals and unified
search suggestions, both offline in terms of precision-recall metrics,
and online through A/B split tests. In both of these evaluations, the
collaborative filtering-based signal performs significantly better than
any other technique.

(a) Profile browsemap without mem-
ber profile images

(b) Profile browsemap with member
profile images

Figure 12: An example of UI enhancement without any changes
in the items recommended. Showing profile images resulted in
dramatic increase in CTR.

5. LESSONS LEARNED
The Browsemap platform has been in production at LinkedIn for

over four years. We learned some valuable lessons during develop-
ment and rollout of the system and the products it supports.

Tall oaks grow from little acorns.
With the expansion of data and content on web properties, there

is an ever increasing need for recommendation products. The avail-
ability of a generic horizontal recommender system that supports
different types of recommendation becomes crucial to quickly meet
these product requirements.

Initially, we developed a profile browsemap that quickly received
traction, which we rolled out to other entity types through a param-
eterized pipeline. However, we had other applications that would
benefit from collaborative filtering, but were struggling with scaling
and incrementalizing computation to handle LinkedIn’s data volume.
Rather than having each team reinvent the wheel, we embarked on
creating the Browsemap platform.

The availability of this platform allows any developer to quickly
bootstrap a new browsemap and put it into production, typically
in just a day or two. Their application can then query the generic
online API. The developer’s time is spent mostly in understanding
the nature of the product, input data preprocessing, and any vertical-
specific requirements.

Browsemaps are frequently used as the first recommendation
product for any new entity or any new action type on the site. For ex-
ample, LinkedIn recently introduced a feature that allows members
to showcase their portfolio of work on their profile page. A natural
extension has been to show a content browsemap. As another exam-
ple, LinkedIn added the ability to follow influential members on the
site to receive their updates and long-form posts. On initial launch,
a browsemap was introduced as part of the sidebar of each article
to show “wisdom of the crowd” recommendations on other articles.
Further, once a member follows an influencer, we know they are in
“following mode” and can display another browsemap of co-follows
of that influencer in the flow to further increase conversions.



Figure 13: An illustration of job browsemap to guide users to view
related jobs after applying for a particular job.

These recommender systems can be augmented as needed with
more sophisticated similarity rankers using browsemap data ele-
ments as latent features: co-occurrences of views, follows, likes,
comments, searches, and so on.

A picture is worth a thousand words.
Our observation, which was reiterated through many examples, is

that the context and presentation of browsemaps or any recommenda-
tion is paramount for a truly relevant user experience. That is, design
and presentation represents the largest ROI, with data engineering
being second, and algorithms last. One must first understand the user
intent, then optimize the flow, and then set the right expectations.

To clarify this, consider Figure 12, which showcases the profile
browsemaps that appear on a member’s profile page. The recom-
mendations provide a nice pivot when someone is in profile viewing
mode, and the right expectations are set through the explanation of
their origins (“People Who Viewed This Profile Also Viewed”). On
the left, these browsemaps show only the recommended member’s
name and title. On the right, the module also shows a member’s
photo, which makes the recommendations more pleasing and promi-
nent. The resulting 50% lift in click-through rate was one of the
largest lifts in recommendation performance for this product, and
surpassed any algorithmic improvements by a sizable margin.

Besides changing the visual appearance, the context is also impor-
tant. As an example, consider the jobs ecosystem at LinkedIn, where
a member can naturally apply for a position after viewing a job page
on the site. After they submit their application, the member is sent
to a confirmation page, as shown in Figure 13. Up to this point the
member is in the context of job searching and thus would likely
want to explore other related jobs, which is a great vehicle for the
job browsemap. An A/B split test that displays the job browsemap at
the end of the application process versus one that does not, showed
a dramatic 500% lift in the job application rate.

One hand washes the other.
Further experimentation of user intent with recommendations has

led us to the understanding that collaborative filtering-based and
content-based recommendations serve different needs for members.

Job Browsemap

Similar Jobs

Figure 14: Job description page has both collaborative filtering and
content-based recommendations. The two recommendation types
can coexist on the same page without cannibalization of engagement.

The job entity page, as shown in Figure 14, shows job browsemap
recommendations. On the same page, it also shows “similar jobs”,
which performs content-based matching of job postings based on
title, description, required skills, and location similarity. We per-
formed a true multivariate test, showing both recommendations,
showing only one, adjusting locations and the number of recom-
mendations. We found that these recommendation types can coexist
without cannibalization of engagement. In fact, they actually am-
plify conversions because each module’s conversion rate is almost
independent of the other, and they independently show different
facets. That is, collaborative filtering fulfills members’ curiosity to
learn from other people, and content-based recommendation allows
the user to take a lead role in discovering new content. We repeated
this test across other entity pages and found the same result.

You can’t get blood out of a stone.
A common problem inherent with collaborative filtering is cold

start [12]. When a new job is posted or a new member registers, there
is no activity on these new entities. Or for infrequently viewed items,
there is only sparse activity. Desparsification is vertical-specific
and the platform provides techniques that can leverage the social
graph or latent properties from other entities [13]. We’ve also com-
moditized another technique as part of the Browsemap platform that
we found works reasonably well for our use cases: using a mem-
ber’s browsing history to personalize a backfill of any sparse entity
recommendations.

Consider a member who has viewed several jobs, but then lands
on a newly posted job with only minimal activity and thus a
sparse browsemap. To combat this, the online system surfaces the
browsemaps from the jobs he has previously viewed merged through
a reduction function. A/B testing has found that this technique can
provide high coverage with virtually the same recommendation
quality, measured by the click-through rate.

A chain is only as strong as its weakest link.
Browsemap computation, as any collaborative filtering recom-

mendation, relies solely on user activities and is thus extremely



sensitive to the quality and quantity of input data. Due to the many
numbers and diverse nature of browsemaps that are computed, we
initially faced significant consternation at the quality of input data:
browsemaps are beholden to instrumentation on frontend services
and the robustness of LinkedIn’s data pipeline. The result was some
broken or incomplete browsemaps due to some upstream problem,
which was often time-consuming to diagnose. For example, there
could be a regression when emitting an activity event, which is hard
to catch because it doesn’t break business logic, only later down-
stream analysis.

In the last few years, LinkedIn has transformed its data pipeline
from a batch-oriented file aggregation mechanism to a real-time
publish-subscribe system [15]. We added robust auditing to ensure
correct per-hop reliable data transfer, from the frontend all the way
to our relevance systems. The Browsemap platform also includes
auditing as part of its run to compare input and output coverage
and offline metrics, alerting if there is significant deviation. Further,
we have added code-driven test automation for tracking events, so
most regressions are caught as part of our continuous integration
process, not after release. Data quality has vastly improved since we
put these systems into place.

6. CONCLUSION
In this paper, we present Browsemaps, the item-based collabora-

tive filtering platform at LinkedIn. A hybrid of offline/online system,
the system computes a latent co-occurrence graph in batch and
serves results to users with low-latency. The system’s usability and
its quick onboarding procedure have enabled many behavior-based
recommendation products at LinkedIn in the past few years. The
various datasets Browsemaps produces are also used in many hy-
brid recommender systems that combine collaborative filtering and
content-based methods. In addition to case studies on how LinkedIn
uses the Browsemap platform, we presented lessons learned in the
field over the several years this system has been in production.
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